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DETECTION AND CONTINUOUS ESTIMATION: 
THE FUNDAMENTAL ROLE O F  THE OPTIMUM REALIZABLE LINEAR FILTER* 

H. L. Van Trees  
Department of Electrical Engineering and Research Laboratory of Ekctronics  -_ 

/ Massachusetts Institute of Technology, Cambridge, Mass. 02139 

I. INTRODUCTION 

The importance of the differential equation 
(or state variable) technique of representing 
dynamic systems for optimal control problems 
is well-known. In the communications a rea  the 
technique appears useful in two classes of 
problems. 

(i) In the first  class,  the optimum receiver 
may be either a linear o r  nonlinear system. It 
contains as a component a linear filter which 
is a solution to the familiar Wiener-Hopf equa- 
tion. 

(ii) In the second class,  the fundamental 
problem may be one of signal design o r  mes- 
sage shaping. The problem is formulated in 
te rms  of some equivalent optimal control prob- 
lem which may then be solved. 

In this paper, we discuss briefly the f i rs t  
class of problem. The discussion i s  tutorial in 
nature. Typical problems in the second class  
are discussed in refs. 1 and 2. 

In section 2, we discuss the estimator 
equations. In section 3, we study the applica- 
tion to detection problems. In section 4, we 
study nonlinear modulation problems. 

II. ESTIMATOR EQUATIONS 

The basic linear estimation problem i s  

r ( u )  = c ( u ) a ( u )  + n ( u )  Ti 5 u 5 Tf  (1) 

where a ( u )  and n (u )  a r e  sample functions from 
independent zero-mean, Gaussian random 
processes with known statistical properties and 
c ( t )  is a deterministic carr ier .  The desired 
signal is denoted by d ( t )  . The optimum esti- 
mate is obtained by passing r ( u ) ,  Ti 5 u 5 T, 
through a continuous linear filter. We denote 
the output of this linear device as &( t )  . 

the mean-square e r ror ,  
We choose the linear processor so that 

* This work was supported principally by the 
National Aeronautics and Space Administration 
(Grant NsG-334). 

is minimized. 

If d ( t )  = a ( t )  (3) 

then we a re  trying to estimate the message. 

Three special cases arise:  

(i) t > T, prediction, 

(ii) t = T , realizable filtering, 

(iii) t < T, filtering with delay. 

There a r e  two alternative ways of solving 
the problem. The first method characterizes 
the processes in te rms  of their  covariance func- 
tions and the linear processor in te rms  of a 
time-varying impulse response. We will label 
this method the impulse response method. 

2.1 ImDulse ResDonse Method 

We write, 

A IT' 
d ( t )  = h ( t , u )  r ( u ) d u .  (4) 

'Ti 

The process statist ics a r e  described by, 

= c ( t )  K,(t,u)c(u) + K,(t,u). 

Then, the optimum linear filter must 
satisfy the integral equation (e.g., ref. 3) 

jTy h,(t,U)K,(u,z)du K, j r ( t ,Z)  (6) 

Ti 5 Z Tf 

Ti 5 t 5 T, 

Ti  

The optimum fil ter i s  shown in Fig. 1. 

The e r r o r  using the optimum fil ter is 

(,(t) = K d ( t , t )  -1 h, ( t l f )Kdr ( t lT )dT.  (7) 
T f 

Ti 
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There a r e  a number of special cases that 
arise frequently in practice. The pertinent 
equations a r e  summarized in Table 1. 

differential equation (or state-variable) method. 
We will confine our discussion to the realizable 
filtering problem. The prediction problem i s  a 
tr ivial  modification (e.g., ref. 4). The filtering 
with delay is quite involved (e.g., refs. 5 o r  6). 

A second approach might be termed the 

To characterize the message we write 

- ;(t) = - -  F ( t ) x ( t )  + - G ( t ) u ( t )  (8) 

where x ( t  i s  the state vector ( n x 1) .  - 
A canonic message generator is shown 

in Fig. 2. The double lines denote a vector 
path. The matrices r ( t )  and c ( t )  describe the 
system dynamics. The forcing function u ( t  1 i s  
a white noise input used to generate a ( t ) .  The 
actual message a ( t  1 is some linear combination 
of the state variables. 

2.2 State-Variable Method 

Here we characterize the message and 
noise processes in t e rms  of the vector- 
differential equation describing the linear sys- 
tem which would generate them if it were 
excited by "white" noise. 

The observation (or modulation) equation 
describes how x-( t )  is transmitted. 

Table 1. Summary of Equations. 

Integral Equation Description Case Assumptions 

Interior point 
estimator 

Fixed endpoint 

1 

d ( t )  = a ( t )  

t = T, 

Realizable point 
estimator 

2 

3 Realizable point 
estimator in 
white noise 

I 
T i s z < t  

Interior point 
estimator 

Variable endpoint 

4 

5 Interior point 
estimator 

White noise 
Variable endpoint 

I .  

T i < z < t  

T i < r 5 t  

2 
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r ( u )  = c ( u ) x ( u )  + w(u)  Ti 5 u 5 t (10) - * ,  

To make eqs. (10) and (1) agree, we 
require 

c ( u ) a ( u )  = c ( u ) x ( u ) .  (11) 

Frequently, a (u )  is the first component of 
the state vector. 

Then 

- c ( u )  = [ c (u )  0 io.... io]. (12) 

The additive noise w( t )  is assumed to be 
a sample function from a "white" zero-mean 
Gaussian process of spectral  height N0/2 
(double-sided). If there is a colored noise 
component, it is included in an augmented state 
vector. 

The optimum estimate $ ( t i  is described 
in te rms  of a differential equation whose 
forcing t e r m  is r ( t ) .  In the cases of interest, 
A d ( t )  can be expressed as a linear combination 
of the state variables. 

n 

i = l  
d ( t )  = d i ( t ) x i ( t )  ! - D(t)x- ( t ) .  (13) 

Since minimum mean-square estimation 
commutes over linear transformations, we 
estimate the state variables and use 

n 

The differential equation describing the 
optimum estimate of the state vector is: 
(This result is due to Kalman and Bucy, ref. 4) 

We see that the equation has the same 
structure as the message generation equation 
with the following associations 

r ( t )  - - -  c ( t )  x ( t )  \ u ( t )  (17) 

The optimum estimator is shown in Fig. 3. 

The matrix - z ( t )  is specified by the gain 
equation, 

(18) 
2 

- No-P - z ( t )  = - &  ( t ) C T ( t )  

where i p ( t )  is the e r r o r  covariance matrix in 

estimating the state variables. It satisfies the 
equation, 

The last equation is a nonlinear equation 
which is commonly referred to as the variance 
equation. 

For  the case in which d ( t )  = a ( t  1 the 
system in Fig. 3 is identical to the system in 
Fig. 1 under the assumptions of case 3. 

The obvious advantage of the state-variable 
approach is that the required functions a r e  
easily computable. 

We now look at two classes of communi- 
cations problems in which the linear filters 
shown in Figs. 1 and 3 play a fundamental role. 

III. DETECTION PROBLEM 

We consider two common detection prob- 
lems. 

3.1 Known Signal in Colored Noise and White 
Noise 

In the binary hypothesis case, 
- 

HI : r ( t )  = s ( t )  + n,(t) + w( t )  

H,: r ( t )  = n,(t) + w( t )  

0 5 t 5 T 

0 5 t 5 T 
(20) 

The signal s ( t )  is a known deterministic 
function. The noise n,(t) is a zero-mean 
colored Gaussian noise with a square-integrable 
covariance function Kc(t,u). The noise w( t )  is a 
zero-mean white Gaussian noise with a covari- 

ance function 7 6 ( t - u) . 

performs a likelihood ratio test. 

NO 

As is well known, the optimum receiver 

Using the impulse response approach, 
t 

where h,(u,z) satisfies the equation for case 3 
in Table 1 with the associations 
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K,(t,u) \ K, ( t , u ) .  

This can be simplified by defining, 
T 

g ( T )  = t [ s ( u ) [ 8 ( r - u ) -  h , ( u , ~ ) ] d u .  (23) 

Then 
T 

L ( T ) :  i g ( T ) r ( T l d T  (24) 

and the receiver is the correlator shown in 
Figi 4. 

this result into a structure containing the real- 
izable linear filters of Figs. 1 and 3.  The 
technique used carries over to a large number 
of interesting cases. 

We now demonstrate how one translates 

We start by writing, - 
L ( T I  d t  

where 
.t 

.. 
- 2 11: (u h,(u ,z : t 1 r ( z  1 dz d u (26) 

No 0 0 

and h,(u,z: t )  is the optimum filter (case 5 
in Table 1. 

Differentiating eq. (26) with respect to t , 
we have, 

Re-arranging eq. (27), we have, 

t 

{ r ( t )  - ~ h , ( t , z : + ) r ( z ) d z ) .  (29) 

The resulting receiver has the simple 
form shown in Fig. 5.  (Observe that this par- 
ticular structure could also have been obtained 
using a "whitening" argument, e.g., ref. 7.) 

The performance follows easily, 

A second case of interest arises when 
the signal component i s  random. 

3.2 Gaussian Signals in Gaussian Noise 

In the simplest binary hypothesis case, 

H I :  r ( t )  = sa ( t )  + w ( t )  Ti 5 t 5 T, 

H,: r ( t )  w ( t )  Ti 5 t 5 T, 
(31) 

I 

Here s ( t )  is a sample function from a a,  zero-mean Gaussian random process. 

The likelihood ratio test  is: 
H 

L = l l i r d u  r ( r ) h o ( r l u ) r ( u )  ><I y (32) 
HO 

Proceeding as in section 3.1, we obtain 

where 

(This result is due to Schweppe, ref. 8.) 

Once again we can find all of the point esti- 
mators using the state variable approach. 

t The receiver structure is shown in Fig. 6 .  

(27) +[ dh,(u,z: t )  r ( z 1 d z} . a t  
One can show easily that, We now turn to another class of commu- 

nications problems. 
ah,(u,z: t )  

-h,(u,t: t )h,( t ,z:  t )  (28) 
at  IV. ESTIMATION OF CONTINUOUS 

WAVEFORMS: NONLINEAR MODULATIONS (where h, ( 0 ,  : t )  is given by case 5 in Table 1 
and i s  sfmmetric in its first two arguments). The continuous estimation problem is: 

4 7/1 



* . 

r ( u )  = S [ U :  ~ ( u I ]  t W ( U )  -03 < p < t (35) 

where 8 ( u )  i s  a sample function from a Gaus- 
sian random process.  The transmitted signal 
s [u : 8 (  u)]  depends on 8 ( u )  in a deterministic 
nonlinear no-memory manner. 

In order  to be explicit we will confine 
our comments to the angle modulation case. 

Then, 

s [ U  : 8 ( u ) ]  = f i  s in  [w,u + ~ C U ) ] .  (36) 

The function 8 ( u )  i s  related to the message 
a ( T) through some linear operation. 

For  example, in FM, 

s [ u :  a ( T ) ]  = s i n  [wCu t/",,,,rl. (37) 
-(D 

Then 

s [ u :  8 ( u ) ]  d= A s i n  [wCu t 8 ( u ) ] .  (38) 

If 8 ( u )  is the state vector of 8 ( u )  process, 
then, ingenera l ,  

- 8 ( u )  = f a ( u )  - ~ ( u )  + g , ( u ) a ( u ) .  (39) 

The actual phase 8 ( u )  is the first component 
of this vector process. 

Now let A,, ( t  1 be the state vector of the 
message process. 

Then, the total state vector of concern i s  

Then one can show that an approximation 
to the optimum demodulator is the phase-lock 
loop shown in Fig. 7. The loop filter is simply 
precisely the same as the loop filter in Fig. 3. 

the state -variable formulation. 
There are several  obvious advantages to 

(i) The actual nonlinear demodulator is 
constrained to be in the form of a closed loop 
system. We are trying to design the optimum 
loop filter. This is what state-variable approach 
gives automatically. 

(ii) There a r e  two quantities that we are 
trying to estimate simultaneously. The first i s  

the phase angle. This estimate is needed to  
keep the loop operating in i ts  linear region as 
long as possible. The second desired quantity 
is the message. Since it is a linear combina- 
tion of the state variables and we automatically 
estimate all of the state variables, the message 
estimate comes out as a by-product of the loop 
filter design. 

Similar arguments can be applied to other 
nonlinear modulation schemes. 

V. SUMMARY 

In this paper we have outlined the funda- 
mental role of the optimum linear filter in 
several  interesting communication problems. 
Since state-variable techniques frequently pro- 
vide the most efficient method for finding the 
optimum linear filter, their  importance in the 
above problems is obvious. 

Our discussion has been very brief. A 
detailed development of the ideas is contained 
in 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

ref. 9. 
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Fig. 1. Optimum fil ter,  impulse response realization. 

Fig. 2. Canonic message generator. 

I 

Fig. 3. Optimum estimator, state-variable 
realization. 

Fig. 4. Correlation receiver. 

REALIZABLE PT. 
EST I M AT0 R 

REALIZABLE PT. 
E S TI M AT0 R 

Fig. 5. 

Fig. 6. Optimum realizable processor: Gaussian Fig. 7. 
signal in Gaussian noise. 

Receiver for known signal in colored 
noise. 

I L I N E A R  
TRANSFORMATION 

VOLTAGE-CONTROLLED 

Demodulator for an angle-modulation 
system. 
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A THEORY OF CONTINUOUS NOM. INEAR RECURSIVE- FILTERING 

WITH APPLICATION TO OPTIMUM ANALOG DEMODULATION* 

Donald L. Snyder 

Research Laboratory of Electronics 

f Massachusetts Institute of Technology 

Cambridge, Massachusetts 

ABSTRACT 

A new approach is presented for the 
continuous nonlinear filtering or esti- 
mation problem. The approach is based 
on the use of Markov processes and state- 
variable concepts. Equations are derived 
for approximate minimum-mean-square-error 
estimates of a Markovian state vector 
observed in a signal in which it is im- 
bedded nonlinearly. A general model for 
analog communication via randomly time- 
varying channels is defined and related 
to the state vector estimation problem. 
The model includes as special cases such 
linear and nonlinear modulation schemes 
as AM, PM, FM, and PMn/PM; and such con- 
tinuous channels as Rayleigh and Rician 
channels, fixed channels with memory and 
diversity channels. The approach leads 
automatically to physically realizable 
demodulators whose outputs are approxi- 
mate MMSE estimates of the message and, 
if desired, the channel disturbances. 
Special consideration is given to PM and 
FM . 

NOTATION 

- v(t) Lower-case, underscored 
letters denote column vectors 

The ith component of y(t) 

A vytor whose ith component 
is dt vi(t) 

- M(t) Capital, underscored letters 
denote matrices 

d 
@t) 

*This work was supported principally by 
the National Aeronautics and Space 
Administration (Grant NSG-334). 

Transpose of s(t) 
Inverse of g(t) 
A column vector whose com- 
ponents are nonlinear, no- 
memory, time-varying trans- 
formations of the vector y(t) 
The Jacobian matrix associated 
with f [  t:v(t)] , the (i-row, 
j -column) eiernent of the 
matrix is - f. It:v(t) I 
Circumflex denotes the exact 
minimum-mean-square-error 
estimate 
Asterisk denotes the approxi - 
mate minimum-mean-square esti- 
mate. 
Denotes the collection of 
waveforms (y(~):t~( T 5 tl 

avi J 

INTRODUCTION 

An approach is presented in this 
paper for continuously estimating a 
Markovian state vector based on a naisy 
observed signal in which it is imbedded 
nonlinearly. 
in many diverse disciplines where the non- 
linear filtering problem arises, so to 
present it in a general context, we shall 
first define an "Estimation Model" and 
associate with it the formal mathematical 
development of the theory. Applications 
are then made to analog communication 
theory. For this purpose, a broad "Com- 
munication Model" is defined for repre- 
senting analog communication via randomly 
time-varying channels. It is a special 
case of the estimation model and can 

The approach can be applied 

1 
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represent such linear-and nonlincar- 
modulation schemes as: AM, PM, FM, pre- 
emphasized FM, and PM,,/PM; and such 
continuous channels as: additive noise 
channels, Rayleigh and Rician channels, 
fixed channels with memory, and multi- 
link channels. Special consideration is 
given to angle-modulation schemes for 
which quasi-optimum demodulators are 
presented. 

Discrete counterparts to the esti- 
mation model, or to special c ses of it, 
hav&,)een studied gy Wonham',', Weaver3, 
Cox , and Mowery . Special cases of 
the continuous model have also been 
studied. Kalman and Bucy6 examined the 
estimation of linearly tr nsformed vector 
Gaussian processes. Bucy' examined the 
estimation of nonlinearly transformed 
one-dimensional Markov processes. Several 
related, not widely known studies have 
been made in the U.S.S.R.9-17. These, 
again, are generally for the case of non- 
linearly transformed one-dimensional 
Markov processes. Applications to com- 
municat ion theory are given by Weaver 
and in the studies of the U.S.S.R. We 
shall study the estimation of non- 
linearly transformed multidimensional 
Markov processes by a technique employing 
linearization and a conditional-mean 
argument. 

19 Lehan and Parks18, Youla 
and Thomas and ~ o n g ~ ~ F m o n g  

others, have used an alternative approach 
to study communication models that are 
equivalent to special cases or our model. 
Their approach, called the MAP approach, 
is based on maximizing the suitably 
defined 2 posteriori probability density 
of a desired waveform. We shall indi- 
cate the relationship between the 
demodulators so obtained and ours. Re- 
call that the MAP approach leads to an 
integral equation for the estimate and 
that the equation corresponds to a 
physicall unrealizable demodulator. 
Van Treesq2 suggests making an approxi- 
mation to the unrealizable demodulator 
for the purpose of implementation. It 
consists of a cascade of a nonlinear 
physically realizable demodulator and a 
linear physically unrealizable filter. 
On the other hand, the recursive-filter- 
ing approach leads automatically to a 
physically realizable demodulator. It is 
equivalent to the nonlinear physically 
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realizable portion of the cascade approxi- 
mation to the MAP demodulator. 

THE ESTIMATION MODEL 

The Estimation Model is shown in 
Fig. 1. 

Let x(t) be a continuous m-dimen- 
sional vector Markov process described by 
the Ito stochastic differential equation:? 

where f[t:x(t)] is an m-dimentional 
vector whose components are memoryless, 
nonlinear transformations of x(t) and 
- X(t) is an m-dimensional vector whose 
components are Wiener processes. Let 
the covariance matrix associated with 
x(t) be: - 

where X(t) is a symmetric, non-negative 
definite, m X m matrix. The elements of 
X(t), denoted by X..(t), may be time- 

1 J  varying. 
- 

Observe that more than one vector 
process can be represented by (1) simply 
by adjoining the individual vectors to 
form x(t). Observe also that x(t) can 
have Jeteministic components (e.g., con- 
stant and time-varying parameters and 
signals), in which case the corresponding 
elements of z(t) are zero. 

Reid2\ that the a priori probability 
density, p(x;t), associated with the 
Markov process, x(t), defined by (1) 
satisfies the Fokker-Planck equation 

t is known (e.g., see Bharucha- 

7 These equations were first given a 
rigorous interpretation by I ~ o ~ ~ .  
recent discussion of his formulation is 
given in the engineering literature by 
Wonham ' '. Alternative interpretations 
based on new definitions for stochastic 
inte rals have been suggested by Straton- 
v i ~ h ~ ~  and Wong and Zakai30. 
sometimes formally divide (1) by dt 
obtaining a white Gaussian process from 
the Wiener process. The interpretation 
will always be as (1). 

A more 

We shall 
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(3)  

with the initial condition p(x;to) = 
P(Xo;to). 

In the sequel we shall be interested 
in estimating scalar Gaussian processes 
with rational spectra. These processes 
can be represented in the form of (1) by 
letting f[t:x(t)] = F x(t), where _F is a 
time-invariant, m x G matrix. 
must also be time invariant. 
fully choosing such a state representa- 
tion, one component of x(t) can be made 
to correspond directly to the scalar 
process. Moreover, when several scalar 
processes are represented by adjoining 
their individual state vectors, each will 
correspond directly to one of the com- 
ponents of x(t). 
venient state representation for scalar 
Gaussian processes is presented in the 
Appendix. We shall use this representa- 
tion exclusively in the applications to 
follow. 

X(t) = By care- 

A particularly con- 

We shall now define the noisy ob- 
served process. Let y(t) be a con- 
tinuous, p-dimensionai vector random 
process described by the Ito equation: 

where g[t:x(t)] is a p-dimentional vector 
whose components are memoryless, non- 
linear transformations of x(t) and i(t) is 
a p-dimensional vector whose components 
are Wiener processes. Let the covariance 
matrix associated with - q(t) be given by 

E [ J ( ~ ) ~ ) ' ( u ) ]  - = - N ( t ) r n i n ( t , u ) ,  ( 5 )  

where N(t) is a symmetric, positive- 
definite, p X p matrix. It is assumed 
that N-l(t) exists; this implies that 
noherfree observations cannot be made. 
The elements of N(t), denoted by N.. (t), 
may be time-varying. 1J 

Simply for the convenience of nota- 
tion, we assume that x(t) and q(t) are un- correlated: - - 

Some of the statistics of dy = 
- y(t+dt) - y(t) will be required Tater. 
We shall cTte them here for convenience. 
Observe that to terms of order dt 

as can be demonstrated by using ( 4 )  and 
(5). Furthermore, all higher order 
moments of dr dx' are of order greater 
than dt. 
is essentially deterministic and equal 
to N(t) for dt vanishingly small. Thus, 
to terms of order dt 

This implies that dy dl'/dt 

d y d i  = E [ d y d l ' ]  = N ( t ) d t  (d t  i n f i n i t e s i m a l )  (7)  

A more rigorous discussion justifying (7) 
is given by Kushner3'. Eqs. (1) and ( 4 )  
jointly define a continuous, (mtp)- 
dimensional, vector Markov process whose 
components are the combined components 
of x(t) and y(t). Formally dividing the 
equations by-dt results in the more 
familiar looking expressions: 

d 
dt-  
- x( t )  = - -  f [ t :  x ( t ) ]  + [ ( t )  - 

and 

where L(t) = dX(t)/dt and g(t)= 
dq(t)/dt are myand p-dimensional vectors 
wFose components are white Gaussian 
processes. The associated convariance 
matrices are - X(t) 6(t-u) and - N(t) 6(t-u), 
respective 1 y . 

We shall assume that the actually 
observed process, ~ ( t )  = dy(t)/dt, is 
available from an initial observation 
time, to, until the present time, t. 
The entire observed waveform, 
C:(7):tO 5 7 5 t}, will be denoted by 
r Similarly, the entire waveform 

(y(7) - :to 5 7 t], will be denoted by 
With the observation of r(t), the 

- a priori probability density, p(x;t), 
evolves to the 2 
P(x;tlEt t) = P(-, for which the 
following equation has been correctly 
derived by Kushner26 . 

-to,t' 

-Yto,t' 

osteriori density, 

0' 0 

7/2 
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where E indicates expectation with re- 
spect to p(x;tly The left side 
along with the fi&t two terms of the 
right side of (10) are recognized as 
the Fokker-Planck equation associated 
with K(t), as given by (3). The last 
term on the right represents the modifi- 
cation to the Fokker-Planck equation 
resulting from the observation of z(t). 
When g[t:x(t)], and hence r(t), does not 
depend on x(t), then the last term is 
zero and the equation reduces the 
original Fokker-Planck equation as 
expected. 

- -t Jt). 

DERIVATION OF THE ESTIMATION EQUATIONS 

An equation for the exact minimum- 
mean-square-error estimate of x(t),given 
the accumulated observations, r can 
be derived by using (10) and theofact 
that the estimate, denoted by ?(t), is 
the conditional mean $ 

-t ,t' 

$ The minimum-mean-square-error esti- 
mate of x(t) is a vector whose ith com- 
ponent is the minimum-mean-square error 
estimate of xi(t). 

Multiplying both sides of (10) by 5 and 
integrating results in 

where E denotes expectation with respect 
to p(x;t\_~~,~) and integration by parts 
has been used. 

We now assume that the following 
Taylor expansions for - -  f [ t :x(t) ] and 
- g[t:x(t)] exist: 

The second term is each expansion may be 

is the Jacobian matrix associated with 
the vector, g[t:x(ta]; its (i-row, j- 
column)-element is - f. [t:x(t)]. axi J - 

The equation for the exact estimate 
can be obtained by substituting these 
expansions in (12). The resulting 
expression can neither be solved nor 
readily implemented because of the 
general existence of an infinite number 
of terms. It is natural, therefore, to 
consider the truncation of the expan- 
sions on the assumption that the com- 
ponents of the error vector,e(t)-t(t), 
are small. This assumption can be 
expected to be valid when the disturbance 
processes introduce only small perturba- 
tions in the observed processes. 
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Let z*(t) be the approximate 
minimum-mean-square-error estimate of 
x(t) which is specified by the sub- 
stitution of the expansions for f[t:x(t)] 
and g[t:r(t)] in (12) and the retention 
of the most significant terms. Whenever 
- f[t:x(t)] and g[t:x(t)] are linear 
functions of x(t), no approximation is 
involved and the exact and approximate 
estimates are identical. The equation 
that we obtain for x*(t) is 

- 

(i) multiply the equation for 
A A ') by [Xk-xk(t) 1 (t) 1 ; 

(ii) integrate to obtain an equation for 
the (k,l)-element of the exact error- 
covariance matrix; (iii) use the expan- 
sions for f[t:z(t)] and g[t:x(t)] and 
keep only the most signiTicant terms. 

Proceeding with steps i and ii, we 
us e 

where x*(t) is a symmetric, non-negative 
definite, m X m error-covariance matrix 
defined by v*(t)~[~-~(~][~-~*(t)]l.We shall 
refer to (16) as tThe "Processor Equation. " 
All quantities in it are known except for 
the error-covariance matrix, v*(t), for 
which an equation will be derived. The 
associated initial condition, z*(to), is 
determined from 

where p(x;to) is the a priori probability 
density of 5 at time t . 
is the best estimate o? - x(to) without any 
observations. 

That is x*(to) 

+ [ i -$ ( t ) ] f ' ( t :x ) )k (  d t  xk , ( t )d t  + E{Xk- A xk(t)) 

* N - ' ( t ) [ d y -  - E g ( t : l l ) d t ] ,  (19) 

* { x l - ~ l ( t ) } [ ~ ( t : ~ )  - E g ( t : i ) ] '  

where integration by parts has been used 
to obtain the first three terms on the 
right. We now substitute the expansions 
for f[t:x(t)] and p,[t:x(t)] in (19) and 
keep-only the most significant terms. We 
also use the fact that within the approxi- 
mation, p x t y is normal with mean 
- x*(t); consequen?ly, odd moments of the 
components of the error vector, 
- -  x-x*(t), are zero and even moments factor 
into products of second moments. The 
equation we obtain for ~ * ~ ~ ( t )  is 

(-; '-t 't) 

We note that the terms of (14) hav- d G i k , , ( t )  + dx: ( t )  dg,(t)  
ing the most significant effect on the 
processor equation are the first two of 

mation is, in effect, a linearization 
each expansion. Consequently, the approxi: { ~ ' [ f ( t : X d ' l ] 4 i ( t ) + \ i k ( t ) p [ ~ ( t : ~ ) ]  +z( t ) }k ,dt  

1 
about the current estimate. This implies 
that within the approximation,p 
is normal with mean x*(t). V k i ( t )  v ( j ( t )  - * a' * -  g' [ t : - x"(t)] * *  

a x i  a x j  
We now turn to the derivation of an 

vCa (t) , the (k,,P,)-element of y*(t), is . N - ' ( t ) { d y - g [ t : k ( t ) ] d t } .  - (20) 
equation for y*(t). 

first obtained by the following procedure: 

An equation for 

5 
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The second term on the l e f t ,  
dx*dx* = [ (ds*) (dx*) ' I k 6 ,  remains t o  be 
examined. Using (15) and keeping t e r m s  
t o  the order  of d t ,  we have 

k k  

(dx* ) (d?) '  - -  = f ( t ) F [ g ( t : g ) ]  E - I ( t ) d y d y '  - 
' - N-l( t )  g'[g( t :!*I] y * ( t )  . ( 2 1 )  

Since w e  a r e  r e t a in ing  only those terms 
of order  and dt  and d t  i s  i n f i n i t e s i m a l ,  
dydy' may be replaced by N(t)dt  as i n d i -  
cated by ( 7 ) .  
d t  

Hence, t o  Terms of order  

The processor  equat ion (16) and the 
var iance equat ion ( 2 5 )  j o i n t l y  def ine the 
quasi-optimum estimate, x * ( t ) .  In 
gene ra l ,  t h e  equations a r e  coupled and 
both depend on the  observation vec to r ,  
- r ( t ) .  When f [ t : x ( t ) ]  and g [ t : x ( t ) ]  a r e  
l i n e a r  t ransformations of g ( t ) ,  the 
equations reduce t o  those of Kalman and 
Bucy7 i n  which case the  equations are un- 
coupled and g*(t)  does no t  depend on r ( t ) .  
We s h a l l  s ee  t h a t  t h i s  a l s o  occurs i n  
angle-modulation schemes i n  which the 
t ransmit ted-s ignal  spectrum is  e s s e n t i a l l y  
d i s j o i n t  from the message spectrum. This 
is  of p r a c t i c a l  s ign i f i cance ,  s ince  it  
i m p l i e s  t h a t  Y*(t), and hence t h e  s t r u c -  
t u r e  of t he  quasi-optimum demodulator, 
can be determined before any observat ions.  

Subs t i t u t ing  t h i s  r e s u l t  i n  ( Z O ) ,  w e  have THE COMMUNICATION MODEL 

dvEf( t )  = {O' [~(t : :*) ]~ ( t )  + v*(t)Q[l(t :Xft)]  + X ( t )  
* 

The Communication Model is  shown i n  
Fig. 2 .  * 

+ V ( t )  D[g ( t  : x")] %-I( t )  D'[g( t :$)I ( t)}kl d t 

v k i ( t ) v t j ( t ) -  g ' [ t :  x*(t)] z - ' ( t )  

Let  a ( t )  be an n-dimensional s t a t e  - - -  - 
vec to r  represent ing the output of an 

t inuous vec to r  Markov process defined 
by the  I t o  equation: 

analog message source. a ( t )  i s  a con- 

( 2 3 )  

1 * *  a2 
a*  xiax * -  - 

* { d i - g [ t :  - x?t ) ]  d t }  

That ( 2 3 )  and ( 2 4 )  a r e  equal may be 
demonstrated by expanding the matrix 
expressions.  Formally dividing ( 2 4 )  by 
d t  r e s u l t s  i n  the following equation 
f o r  y*(t) :  

We s h a l l  r e f e r  t o  (25) as  the "Variance 
Equation. " The a s soc ia t ed  i n i t i a l  condi- 
t i o n  is  determined from 

6 

d a ( t )  - = f , [ t :a( t ) ]dt  - + d a ( t ) ,  - (27) 

where a ( t )  i s  an n-dimensional vec to r  
whose components a r e  Viener processes.  
L e t  the covariance matrix a s soc ia t ed  
with g ( t )  be given by 

E [ a ( t ) a ' ( u ) ]  - -  = n ( t ) r n i n ( t , u ) ,  (28) 

where A(t)  i s  non-negative d e f i n i t e ,  
n X n m a t r i x  which may be time-varying. 
More than one message can be represented 
simply by adjoining t h e i r  individual  
s t a t e  vec to r s  i n  the formation of a ( t ) .  
O f  course,  Gaussian messages with r a t i o n a l  
s p e c t r a  a r e  a s p e c i a l  case of (27) with 

-a 

formed by a modulator i n t o  c s i g n a l s  
appropriate  f o r  transmission over the 
channel. The modulator c o n s i s t s  of l i n e a r  
f i l t e r i n g  followed by a memoryless, non- 
l i n e a r  modulator. The l i n e a r  f i l t e r i n g  
may be time-varying and i s  described by 
the s t a t e  equation 

f [ t : z l ( t ) ]  = _Fag(t). 

The message v e c t o r ,  ~ ( t ) ,  i s  t r ans -  



where g(t) is an e-dimensional vector, 
and xu(t) and La(t) are matrices of 
dimensional i X L and L? X n, respectively 
The c signals at the modulator output are 
represented by 3 [ t :g(t) ] . 

A second linear-filtering operation 
follows the modulator. It is described 
by the state equation 

dz-(t) = _F,( t ) f ( t )dt  + l - , ( t )s [ t :u ( t ) ]d t ,  - 
( 3 0 )  

where z(t) is a q-dimensional vector, 
and _FZ(t) and _Ls(t) are matrices of 
dimensional q X q and q X c, respectively. 
We shall allow this filtering to be 
associated with either the modulator or 
the channel, the choice depending upon 
the particular application. 

The modulator, including possible 
linear filtering at its output, contains 
as special cases: linear-modulation 
schemes, such as AM, AM-DSB/SC, and 
AM- SSB; nonlinear -modula t ion schemes, 
such as PM, FM, and preemphasized FM; 
diversity-modulation schemes, such as 
frequency-diversity PM and FM; and multi- 
level-modulation schemes, such as PMn/PM. 

into p signals that are represented by 
the vector g [  t:x(t)]. 
of g[t:x(t)J is-observed in additive 
whiFe Gaussian noise. The observed 
process can be described by the Ito 
equation 

The channel inputs are transformed 

Each component 

where q(t) is a p-dimensional vector 
whose components are Wiener processes. 
Let the covariance matrix associated with 
- q(t) be given by 

where g(t) is a symmetric, positive- 
definite, p X p matrix that may be time- 
varying. 
The actually observed process is z(t)= 
dr(t)/dt. 

We assume that N-l(t) exists. 

Note that we have defined - y(t) 

for the communication model in exactly 
the same way as - y(t) for the estimation 
model. 

Disturbance processes, such as 
additive and multiplicative processes, 
are introduced in the raiidornly time- 
varying portion of the channel. These 
processes can be Markovian in general 
and are described by the Ito equation: 

db( t )  - = f b [ t :  - b ( t ) ] d t  + d E ( t )  , (33) 

where b(t) and ?(t)are k-dimensional 
vectors. The components of B(t) are Wiener 
processes and the associated covariance 
matrix is given by 

E [ @ ( t ) & ( u ) ]  = g ( t ) m i n ( t , u ) ,  ( 3 4 )  

where &(t) is a symmetric, non-negative 
definite, k X k matrix that may be time- 
varying. Of course, as a special case, 
the disturbance processes can be Gaussian 
processes with rational spectra. 

The channel, including possible 
linear filtering at its input, contains 
as special cases: simple additive 
channels; Gaussian multiplicative 
channels, such as Rayleigh and Rician 
channels; fixed channels with memory; 
multilink channels; and other commonly 
occurring channels. The Markovian 
disturbance processes that we include in 
the model cannot be treated with any 
alternative approach. 

The vector, x(t), of the communi- 
cation model is obtained by adjoining 
the individual state vectors - a(t), - u(t), 
- z(t), and b(t). Let 

x ( t )  = - 

( 3 5 )  
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and 
and 

d 
- y ( t )  d t  = r ( t )  = x , ( t )  + n ( t )  (38) 

Then 

dx( t )  : - -  f [ t :  x ( t ) ]d t  + d x ( t ) .  

describes x(t) for the communication model 
and is identical to (1) describing x(t) 
for the estimation model. The order in 
which _a(t), u(t), z(t) and b(t) are placed 
in forming x(t) is arbitrary. 

(36) 

where x(t) is an m-dimensional vector 
with x-(t) = a(t). 
def inea in the Appen2ix. 

F and ;(t) are 

With the definition of the communi- 
cation model now completed, we turn our 
attention to the consideration of appli- 
cations. The procedure is (i) specify 
the particular communication model for 
the application; (ii) identify E(t) , 
- g[t:r(t)], and N ( 7 ) ;  (iiif use the 
Processor and Variance equations (16 and 
25) to determine the structure of the 
demodulator. 

f[t:x(t)l, z(t>, r(t> = d (t)/dt, 

and 

We assume that E[z(t)F' (u)] = 
X6(t-u) is known. From (38) we have 
- g[t:+)l = x,(t>. 

The processor and variance equations 
(16 and 25) become 

L J 

(39) 

APPLICATIONS 

1. Gaussian Message - No Modulation 
where M(t) is a symmetric m X m matrix 
whose Ti,j)-element is v (t) v (t). shown in Fig. 3a. This is a simple 
By comparing (37) and (39); we ok4ain situation to which the Wiener approach 

to the filtering problem is often applied. the optimum processor shown in Fig. 3b. It provides some insight into the results we observe that it depends only on the that we shall obtain for angle modulation first column of V(t). and, at the same time, into the relation- - 

Consider the communication model 

V(t) can be determined numerically ship between the structure of Wiener and 
Kalman-Bucy filters. or can be generated as the output of 

the system specified by ( 4 0 ) .  If desired, 
V(t) can be determined before any actual 
observations. The components of v(t) 
are of interest for two reasons: first, 
they complete the structure of the 
processor; second they describe the 
performance of the processor. We shall 
not give solutions to the variance 
equation here. Rather, we shall be 

a(t) is a stationary Gaussian message - and n(t) is a white Gaussian process of 
spectral height No watts/cps. a(t) and 
n (t) are uncorrelated. 

The equations describing the model 
are (with the representation for a(t) 
given in the Appendix) : 

interested only in obtaining the general 
structure of the optimum processor. 

(37) 
d 
d t  - - x(t)  = f X ( t )  + < ( t )  

A special case arises when to = -= 
so that steady-state conditions 
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exist.** In this instance, the optimum 
filter has the alternative form shown in 
Fig. 4 .  The structure of the optimum 
filter which would arise most naturally 
through application of the Wiener approach 
is, of course, the closed-loop version of 
the filter of Fig. 4. 

2. Gaussian Message - Phase Modulation 
Consider the communication model 

shown in Fig. 5 in which a stationary 
Gaussian message, a(t), phase modulates 
a sinusoidal carrier whose nominal 
frequency is large compared with signifi- 
cant frequencies of a(t). We shall assume 
that the variance of a(t) is unity so that 
@ can be interpreted as the modulation 
index. The phase-modulated signal is 
observed in additive white Gaussian noise 
of spectral height No watts/cps. 

munication model are (with the repre- 
sentation for a(t) given in the Appendix) 

The equations describing the com- 

and 

where _x(t) is an m-dimensional vector, 
and E and z(t) are as defined in the 
Appendix. Observe that x,(t) = a(t). 

We assume that E[g(t)g'(u)] = 
- Xb(t-u) is known. In this instance, 
g[t:x(t)l = C sin [ 
scalar. Hence 

t + ex,(t)], a 0 - 

r l i  

L J  

*Sufficient conditions for the existence 
of a unique steady-state solution are 
given by Kalman and Bucy7 . 

After some manipulation, the processor 
and variance equations (16 and 2 5 )  be- 
come 

and 

- I-B'C { r ( t )  s in [wot + px:(t)] 

+ C c o s [ 2 w 0 t  + 2px:(t)]} - M ( t )  

NO 

where M(t) is a symmetric*m X m Tatrix 
whose (i,j)-element is v (t) vlj(t). li 

We shall examine the variance 
equation first. From ( 4 5 ) ,  the (i,j)- 
element of - V*(t) satisfies 

+ v j + l , i ( t )  * + xij--p 1 2  Cqi(t)V:i(t) 

{ r ( t )  sin [w,t + px"; ( t  I] + c cos [2w0t + 2 p x :( t I]}. 
NO 

( 4 6 )  
* 

v.. (t) can be realized as the output of 
tfd system diagrammed in Fig. 6. Let us 
now conjecture that the components of 
V*(t) are alowly varying. We shall find 
that to a close approximation this is, 
in fact, true. Then the double-frequency 
terms associated with cos [ 2w t+2Bxf(t) ] 
will not propagate through tRe lowpaas 
filtering . consequently, cos [ 2wOt+2Bx1 (t) ] 
has negligible effect and can be dropped. 

9 
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The input  t o  tQe m u l t i p l i e r  is then 
r ( t )  s in[w t+R1 ( t ) ] .  
t h i s  term ?hat the variance equation i s  
coupled t o  both r ( t )  and x* ( t ) .  This 
coupling is  a great  disadGantage p r a c t i -  
c a l l y  because x*(t) and, t he re fo re ,  the 
s t r u c t u r e  of t h e  demodulator, cannot be 
determined before making observat ions.  
For t h i s  reason, i t  i s  worthwhile t o  
examine r ( t )  sin[wot+A1 *(t) 1 c r i t i c a l l y  
so as t o  obtain any poss ib l e  s i m p l i f i -  
c a t ion .  We s h a l l  f i n d  t h a t  a s i g n i f i c a n t  
s i m p l i f i c a t i o n  is poss ib l e .  

It i s  through 

Observe tha t  t h a t  coupling term may 
be r e w r i t t e n  

+Csin [wot  + ~ x , ( t ) ]  sin[w,t + pxy(t)] 

-;ccos[2w0t + B x , ( t )  +px:(t)]. 

(47) 

Again, the double-frequency term can be 
disregarded . The second term on the  
r i g h t  can be expanded : 

~ c c o s p [ x : ( t ~ -  x ,  (t)] 
2 

= $ C  - a C p z [ x , ( t )  - 4 ( t ) ]  + ... (48) 

Within the  approximation f o r  which the 
demodulator is  optimum, a l l  terms of the 
expansion except t he  f i r s t  can be neg- 
l ec t ed ;  t he  others  l ead  t o  terms of 
the order  of the s i x t h  moment of t he  
e r r o r  a t  the  output of the m u l t i p l i e r .  
Thus, t o  a good approximation f o r  small 
e r r o r ,  we have 

where n ( t )  is  a white process,  by which 
we mean t h a t  i t  has a f l a t  spectrum a t  
least  over the frequency range where it 
has e f f e c t .  In r e a l i t y ,  n ( t )  has a 

f i n i t e  var iance given by NOWc, where 
W i s  the channel o r  r ece ive r  input  
bhdwid th .  By inc reas in  the channel 

poss ib l e  t o  make the  probabiyify of 
excursions of 2n(t) /C ou t s ide  a range 
around i t s  mean, zero,  as s m a l l  as 
desired.  Since the magnitude of s i n ( . )  
i s  bounded by un i ty ,  t h i s  implies 

s igna l - to -no i se  r a t i o ,  C 5 /2N W , it  is  

almost always when the  s igna l - to -no i se  
r a t i o  i s  s u f f i c i e n t l y  l a rge .  We con- 
clude t h a t  f o r  l a rge  channel s i g n a l -  
to-noise  r a t i o  

The approximations have e f f e c t e d  an un- 
coupling of the var iance equation from 
r ( t )  and x* ( t ) ,  thereby making a p r a c t i -  
c a l  s i m p l i f i c a t i o n  of importance. The 
var iance equation becomes: 

This equat ion i s  nea r ly  i d e n t i c a l  t o  the  
var iance equation a s soc ia t ed  with the 
no-modulation case of Example l ( s e e  
Eq. 40).  Only the noise  l e v e l  must be 
modified. V*(t) can be determined 
before makizg any observat ions,  j u s t  as 
i n  the no-modulation case.  

In t h e  s t e a d y - s t a t e ,  the Processor 
equat ion (44) l eads  t o  the quasioptimum 
PM demodulator of Fig. 7 .  It i s  seen 
t h a t  t he  s u b t r a c t i v e  s inuso ida l  s i g n a l  
r e s u l t s  only i n  double-frequency terms 
a t  the  output of t he  m u l t i p l i e r .  Since 
these w i l l  not  propagate through the 
f i l t e r ,  t he  s u b t r a c t i v e  branch can be 
discarded. The s impl i f i ed  demodulator 
is a phase-locked loop. 

3.  Gaussian Messape - Frequency Modula- 
t i o n  - 
Consider the communication model 

shown i n  Fig. 8 i n  which a ( t )  now 
frequency modulates a s inuso ida l  c a r r i e r .  
We assume t h a t  a ( t )  has u n i t  var iance;  

7/2 10 



d i s  then the standard deviat ion of t h e  
mgdulation frequency. The s p e c t r a l  height  
of n ( t )  i s  No watts /cps .  

t e d  message, then the equations descr ibing 
the  communication model a r e  (with the 
r ep resen ta t ion  f o r  a ( t )  given i n  the  
Appendix) : 

If w e  l e t  xo ( t )  = u ( t ) ,  the  in t eg ra -  

t 

r ( t )  = C s i n  [wot + d f l o a ( . ) d r ]  + n ( t )  

= Csin[wot  + d F x o ( t ) ]  + n ( t ) ,  

where 

and 

F =  - 

0 I 0 0  

0 -+, I O  

0 -q2 0 I 

I 

0 -+, 0 0 ... 0 

Note t h a t  u ( t >  = x o ( t )  and a ( t )  = x l ( t ) .  

W e  assume t h a t  E[S(t)%'(u)]  = 
g6(t-u)  is known. 
g [ t : x ( t ) l  = C s in[wot+dfxo(t)] .  Hence 

In  ?his instance,  

d f C c o s [ w o t  + d f x o ( t ) ] .  

Afte r  some manipulation, the Variance 
and Processor equations (16 and 2 5 )  be- 
come 

and 

dV*(t) = F V * ( t )  - + $  - ( t ) F  + X d t  - 
- Ld:C{r(t)sin[wot + d,x*,(t)] 

N O  
+ C c o s [ 2 w o t  + 2d,x,"(t)]) - M(t )  ( 5 5 )  

where Eft) i s  a symmetric (m+l) x (mtl) 
matrix whose ( i , j ) -e lement  i s  
voT(t)  vo*(t) .  We observe t h a t  ( 5 5 )  i s  
equivaleni  t o  (45)  , the var iance equation 
f o r  the PM case.  Therefore, the arguments 
leading t o  the s impl i f i ed  var iance 
equat ion,  ( 5 0 ) ,  ca r ry  over and ( 5 5 )  be- 
comes 

Eq .  56 a l s o  a r i s e s  i n  connection 
with a l i n e a r  f i l t e r i n g  problem i n  which 
a ( t )  i s  in t eg ra t ed  before being observed 
i n  a d d i t i v e  white Gaussian no i se .  

In t h e  s teady s t a t e ,  t he  Processor 
equation ( 5 4 )  leads t o  the quasi-optimum 
FM demodulator of Fig. 9 ( the  s u b t r a c t i v e  
s inuso ida l  term of ( 5 4 )  has been omitted,  
s ince  i t  has no e f f e c t ) .  This demodulator 
can be placed i n  the form of a phase- 
locked loop. which is  optimum f o r  e s t i -  
mating u ( t ) ,  and a r e a l i z a b l e  post-loop 
f i l t e r ,  whose output i s  a* ( t ) .  It i s  
t h i s  l a s t  s t r u c t u r e  t h a t  arises most 
n a t u r a l l y  with the  MAP approach and i s  
probably more f a m i l i a r .  The demodulator 
of Fig.  9 has the advantage of r e q u i r i n g  
one less f i l t e r .  
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CONCLUSION 

The usefulness of t he  s t a t e - v a r i a b l e  
approach i n  t r e a t i n g  problems of analog 
communication theory has been i l l u s t r a t e d  
by consider ing angle-modulation schemes. 
Such schemes have a l s o  been t r e a t e d  by 
the  MAP approach, s o  we note  here the  
r e l a t i v e  advantages and disadvantages 
assoc ia ted  with the two approaches. Some 
advantages of the s t a t e - v a r i a b l e  approach 
a re  t h a t  ( i )  considerable in s igh t  i n t o  
the  s t r u c t u r e  of t h e  demodulator i s  pro- 
vided;  ( i i )  the  d i f f e r e n t i a l  equations 
assoc ia ted  with the  approach a r e  more 
amenable t o  numerical eva lua t ion  than 
the  i n t e g r a l  equations of the  MAP 
approach; ( i i i )  r e a l i z a b l e  demodulators 
r e s u l t  d i r e c t l y ;  and ( iv )  a c l a s s  of non- 
Gaussian message and channel dis turbances 
can be t r e a t e d .  In  the  communication 
theory contex t ,  i t  i s  not  ye t  c l e a r  what 
usefulness  ( i v )  has;  however, appl ica-  
t i o n s  i n  control  theory can be given. 
These a r i s e  when w e  wish t o  es t imate  the 
s t a t e  va r i ab le s  of a nonl inear ,  dynamic 
s y s t e m  based on noisy observat ions of the  
s t a t e  va r i ab le s .  

Some disadvantages a r e  t h a t  ( i )  It 
i s  necessary tha t  random processes  and 
l i n e a r  f i l t e r i n g  be representab le  by 
equations of s t a t e .  Thus , Gaussian 
processes  with nonrat ional  spec t r a  can- 
not  be t r ea t ed .  A p a r t i c u l a r  l i n e a r  
operat ion which a r i s e s  i n  a r r ay  problems , 
fo r  example, and cannot be t r e a t e d  
d i r e c t l y  i s  tha t  of pure delay.  
The unrea l izable  f i l t e r i n g  problem can- 
no t be t r e a t e d  eas i ly  . 

( i i )  

In addi t ion  t o  the appl ica t ions  t o  
analog communication theory presented 
here ,  we have also considered the  
following37 problems: 

1. 

2 .  

3 .  

4 .  

FM s igna ls  t ransmi t ted  over 
severa l  d i v e r s i t y  channels; 

FM s igna ls  t ransmi t ted  v i a  
Rayleigh fading channels;  

The s t r u c t u r e  of the r e a l i z a b l e  
quasi-optimum demodulator f o r  each of 
these  cases  can be determined by a 
s t ra ight forward  app l i ca t ion  of the proces- 
s o r  and var iance  equat ions given above 
(16 and 2 5 ) .  

APPENDIX: STATE REPRESENTATION 

FOR GAUSSIAN PROCESSES 

Any s t a t i o n a r y ,  s c a l a r  Gaussian 
process ,  x ( t ) ,  wi th  a r a t i o n a l  spec- 
trum approaching zero f o r  high frequencies  
can be represented by the  d i f f e r e n t i a l  
equat ion 

dm-l 
x ( t )  + ... + $ , x ( t )  - dm x ( t )  + 

d t m  d t m - l  

(57) 

where $ , . . . , j and X1, . . . , X a r e  cons t an t s ,  and 5(p) i s  a white Gaussian m 

process .  A s  i s  well-known, x ( t )  can be 
r e a l i z e d  by the passage of E ( t )  through 
the  f i l t e r  shown i n  Fig.  l oa .  Alterna-  
t i v e  r e a l i z a t i o n s  can be obtained by 
represent ing  x ( t )  by one of s eve ra l  
poss ib le  equat ions of s t a t e .  A p a r t i -  
cu l a r  s t a t e  r ep resen ta t ion  t h a t  we s h a l l  
use,  of which a d e t a i l e d  account i s  given 
by Zadeh and Desoer28. 

FM s igna ls  t ransmi t ted  v i a  f ixed  
channels with memory; and 

where 
PM s igna ls  t ransmi t ted  v i a  a 
random-phase channel ( i .  e .  , un- 
s t a b l e  loca l  o s c i l l a t o r ) .  
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Eq. ( 5 8 )  leads to the alternative 
realization shown in Fig. lob. We shall 
represent the equation in matrix nota- 
tion as 

d - x ( t )  = F x ( t )  + [ ( t ) ,  d t -  - - 
where 

F =  

- J I ,  I 0 0 ... 
-q2  0 I 0 ... 
- J I ,  0 0 I . 

I 

-I), 0 . . a  0 

( 5 9 )  

Observe that F contains a11 of the 
denominator coefficients associated 
with the rational polynomial realization 
and, correspondingly, e(t) contains all 
of the numerator coefficients. Because 
of this feature, the rational poly- 
nomial representation can be obtained 
by inspection from the state representa- 
tion, and vice versa. Also observe 
that the scalar process, x(t), corresponds 
directly to one of the components of x(t). 

A nonstationary scalar Gaussian 

- 

process can be represented by (58  or 5 9 )  
with time-varying coefficients, 
d' (t), ... , 4 (t) and x,(t), .. . , Xm(t). 
Tie filter of pig. 10b with varying gains 
can be used to realize the process. 
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Fig. 1. The estimation model. 

I .  ........ ~ ......... ~~.~~~~~~ .... , .~~ ........................ 
MODULATOR CHANNEL 

Fig. 2. The communication model. 

Fig. 3. (a) Stationary Gaussian message observed in an additive white noise channel. 
(b) Optimum filter for estimating a stationary Gaussian message observed in 

additive white noise : transient conditions. 

I I J 

Fig. 4. Optimum filter for estimating a sta- 
tionary Gaussian message observed 
in additive white noise : steady-state 
conditions. 

15 

Fig. 5. Stationary Gaussian message t rans-  
mitted in an additive white noise 
channel by phase modulation. 
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v; ( 1 )  
I 

(t) 

c cos[wot+Bx; (t)] 

I PHASE 
MOD U L AT0 R 

c sin [wOt +BX; (t)] 

* 
Fig. 6. A realization for the (i,j)-element of 2 (t) Fig. 7 .  Quasi-optimum demodulator for  a sta- 

tionary Gaussian message transmitted 
in an additive white noise channel by 
phase modulation. 

for the phase modulation case. 

r ( t )=Cs in  wot+df  /' 1 ' 0  

cos[wot +df u'(t)] 

xc; ( t ) =  u'(t) 
_ _ _ _ _ _ _ _ _ - - -  _-__l 

I MODULATOR 
L ________.-.-.--. J 

VOLTAGE - CONTROLLED 
OSCILLATOR 

I V. 00 

1 
Fig. 8. Stationary Gaussian message t rans-  Fig. 9. Quasi-optimum demodulator for a s ta-  

mitted in an additive white noise 
channel by frequency modulation. 

tionary Gaussian message transmitted 
in an additive white noise channel by 
frequency modulation. 

Fig. 10. Two realizations for any Gaussian process with a rational 
spectrum approaching zero for high frequencies. 
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MAXIMUM A POSTERIORI INTERVAL ESTIMATION 

Arthur B. Baggeroer 
Research Laboratory of Electronics 

I Massachusetts Institute of Technology 
Cambridge, Massachusetts - 

ABSTRACT 

The problem of determining the maxi- 
mum a posteriori estimate of a state 
vector of a random process within an 
interval is considered. The state vector 
is characterized as the response of a 
vector differential equation to a white 
Gaussian forcing function. A modulator 
produces a signal from this state vector 
which is then observed over an additive 
white Gaussian channel. 

A set of differential equations 
which the optimal estimate must satisfy 
is derived by using Lagrangian multipliers 
and the calculus of variations. The 
derivation is analogous to methods in 
optimal control theory. 

In the case of a linear state-vector 
equation and a linear modulator these 
equations can be solved explicitly and 
uniquely. The estimate at the interval 
end point is shown to be identical to the 
realizable estimate, and then a convenient 
means of implementing the MAP receiver by 
using this estimate is shown. The solu- 
tion to the problem of filtering with a 
fixed delay is also derived from the MAP 
estimation equations. 

For the linear case, a differential 
equation satisfying the error is derived. 
From this, a differential equation for the 
covariance of the error matrix is derived. 
A solution to this equation is given by 
finding the appropriate integrating factor 
and then using the covariance of error 
matrix for the end-point estimate. 

INTRODUCTION 

The method of characterizing an 
optimal receiver by a set of differential, 
or difference, equations has been very 
useful. Most previous applications have 
been limited, however, to estimation at 
the end point of the interval by using 
just the past of the received signal. 
This corresponds to the realizable filter- 
ing problem, If we desire to estimate the 
signal over the entire observation inter- 

* 
National Aeronautics and Space 
Administration (Grant NsG-334), and by a 
National Science Foundation fellowship. 

This work was supported by the 

N67L29904 - - 
val by using all of the received data, we 
require an interval estimation procedure. 
This is analogous to the unrealizable 
filterine; problem in which both past and 
future data are used. 

One approach is to estimate coeffi- 
cents of a Karhunen-Losve expansion of 
the message. This approach leads to a 
set of integral equations which the opti- 
mum estimate must satisfy. Another ap- 
proach is to apply the calculus of 
variations to the a posteriori probability 
density in order to maximize it. This 
leads to a set of differential equations 
which the optimal estimate must satisfy. 
This approach has the advantage that the 
set of differential equations may be 
easier to implement in order to actually 
obtain the estimate. 

In this paper we shall be concerned 
with maximum a posteriori (hereafter ab- 
breviated MAP) estimation over the entire 
observation interval. 

DERIVATIOW OF THE MAP ESTIMATION EQUATIOXS 

We shall assume that the message 
source may be characterized in a finite 
dimensional state variable form. Con- 
sequently, we represent this message 
source as the solution to the vector dif- 
ferential equation 

dt 

:(To) 

in which 

= x  
-0 

t 

is an nxl state-variable vector 
characterizing the message 

is the nxl state-variable 
vector at To 

is an mxl vector forcing 
function 

is the independent time vari- 
able within the interval 
ToctcTf 
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r is a (nxl) vector function of 
the vectors x(t) and u(t) and 
the scalar t. 

- 

The message source vector s(t) is 
used to produce a signal vector 
- s(t;x(t)), which is transmitted over an 
additive noise channel. Therefore, the 
received signal is given by 

- r(t) s-(t;x(t) + x(t). ( 2 )  

A diagram of the system is illustrat- 
ed in Fig. 1. 

F o r  the maximum g osteriori (MAP) 
estimate we wish to maximize R--1 p(x t)lr(t)) 
as a function of x(t) over the interval 
Toct<Tf, when - r(t) has been observed at 
the receiver. We now want to show that 
maximizing this quantity is equivalent to 
maximizing the quantity p(r(t) Is(t)) 
p(u(t)) ~(16). To show this we first 
apply Bayes' rule to the MAP density. 
This gives 

where c is independent of x(t). Now since - x(t) is a state-variable vector, it is 
uniquely determined by the initial state 
x and the forcing function u(t). There- 
S r e ,  by assumming independence of x and 
- u(t), we obtain -0 

( 4 )  
We also note that 

Since the observed signal density is 
conditioned upon the transmitted signal 
- s(t;x(t)), which is completely determined 
by - xrt). Finally, we have 

In general the maximization of Eq. 
( 6 )  is difficult; however, if the various 
factors are quadratic forms, the problem 
is considerably more tractable, With this 
in mind, we are led to the assumption of 
Gaussian distributions for x , u(t) and 
w( t) . We shall assume that-he estimate 
of the state at t = To is Yo, - 

( 7 )  

The error in this estimate is assumed to 
be Gaussianly distributed with a covari- 
ance matrix of P 

0 

( 8 )  

Ye now assume that the source function 
u(t) is a white Gaussian random process 
cith mean mu(t) and covariance Q(t)G(t-r), 

The final assumption is that the observa- 
tion noise is also white Gaussian random 
process with mean m (t) and covariance --w R(t)d(t-T) 

With these assumptions, we have 
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Instead of maximizing the quantity 
p(E(t)JE(t:s(t)) p(i(t)) p(s), we can Tf dx(t) 
minimize the negative of its logarithm. 

functional 

/ E (t) - dt. dt Consequently, we wish to minimize the TO 

Integrating this by parts yields 
1 - T  -1 
2 4 4  

J(i(t),s) = -[x -X 1 Po [50$1 + 
Tf dx(t) T / 2 (t) - dt E (Tf)~(Tf) - 

dt 
TO 

T 
1 

1 I(r(t)-~(t)-s(t;x(t))T R'l(t) T Tf dgT( t 1 
TO E (To)lf(To)- / - x(t) dt dt - 

(17) TO 
(Il(t)-IIIw(t)-s(t;x(t)) + 

Now, let us denote the optimal estimates 
of x x(t), u(t), and s(t) by 

%, z(t), i ( t ) ,  and s(t), respectively. 
Now let us extend J(u(t), xo) around 
the optimal estimates. We get 

A *; A A (y-( t I-%( t 1 )T Q-l( t 1 (u( - t 1 -III~( t 1 1 1 dt , 

(15) 
with constraint 

dx( t ) - u(t) Qt, + o6:(t). 
- dt = f(s(t),u(t),t) To<t<Tf (18) 

- x(To) = 5 . The response of the message source to this 

- x(t) = Q(t) + EGlf(t) + O ( E ) ,  (19) 
We can incorporate the constraints 

by using the Lagrangian multiplier techni- where 
af - que, Therefore, J(u(t), x-1 becomes a f  - s ( 6 x )  = - 611 + - 6u(t) 

J(U(t),%) = alf ai / A  
2 

1 
T 

dx( t 1 T p (t) (L - f(x(t),i(t), t))} dt dt - 
(16) 

Before considering the minimization pro- 
cedure, we want to examine the term 

The resulting signal s(t;x(t)) 

[The notation af 1 is interpreted as 

(Vxf> evaluated along the optimum tra- 
jectory, i.e., the derivative with respect 
to each component of 5 6f each component 
of g .  The result is an nxn matrix.] 

ax 
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Consequen t ly ,  up t o  terms of o r d e r  E w e  
have 

A A S i n c e  E ( t )  and 

es t imates ,  w e  must have 

are t h e  optimum 

A A J ( u ( t ) ,  s ) -J( : ( t ) ,  z 0. ( 2 2 )  

T h e r e f o r e ,  by combining t h e  v a r i o u s  v a r i -  
a t i o n s ,  w e  have  

S i n c e  E is a r b i t r a r y  a n d  w e  may n e g l e c t  
t h e  te rms  o f  h i g h e r  o r d e r ,  t h i s  l a s t  t e r m ,  
t h e  f ac to r  m u l t i p l i e d  by E ,  must b e  

A d e n t i c a l  y e q u a l  t o  ze ro  i n  o r d e r  f o r  u ( t )  and A x+ t o  b e  optimum. - 
W e  now r e q u i r e  t h a t  E ( t )  s a t i s f y  

t h e  d i f f e r e n t i a l  e q u a t i o n  

(24) 
o r  e q u i v a l e n t l y  

A s  a boundary c o n d i t i o n  on g ( t ) ,  w e  a l s o  

r e q u i r e  

- p ( T f )  = 0 .  ( 2 6 )  

With t h i s  r e s t r i c t i o n  on E ( t )  , w e  
have  

m I 

Now 6% and 6;( t )  a re  a r b i t r a r y .  

T h e r e f o r e ,  

CQo-Xol - T  Po-' - - pT(To) = 0 ( 2 8 )  

and 

E q u i v a l e n t l y  , 

(%- 2)  Po g ( T o )  ( 2 8 a )  



By using this last equation, we can solve 
for u(t) and eliminate it in the equations 
whic5 the optimal estimate must satisfy. 
Summarizing the results, we have 

(31) 

These are essentially the equations 
derived by Bryson and Frazier. The deri- 
vation, however, is complete in that we 
have derived the equations that must be 
satisfied at an extremum of the functional 
J. We have not shown that this extremum 
is in fact a minimum. There is an analogy 
here with the minimum principle for an 
optimal control roblem. The major dif- 
ference is that ??(t) is unconstrained at 
both ends of the-interval. If we wished, 
however, to convert this problem into an 
exact dual of the c ntrol probl m, we 
could require that E(Tf) equal gfilt(Tf), 
where tf ilt ( Tf 1 the optimal filtered , or 
end point estimate, at Tf. We can impose 
this condition because both estimates 
kTf) and xfilt(Tf) have the same amount 
of data to operate upon. For further dis- 
cussion of the relevence to optimal con- 
trol problems, we refer to ref. 3 .  

As a consequence of the derivation, 
we find that in order to obtain the MAP 
estimate, we must solve a zn-dimensional 
matrix differential equation. In general 
these equations are nonlinear and there is 
no general technique available to solve 
them. The difficult feature of implement- 
ing them on a computer is the boundary 
condition 

A 

p(Tf) = 0. 

ECx2(To)l = P 

r(t) = A sin (oat + 6 (t)) 

ECw(t)l = 0 

E[w(t) u ( T ) ]  = - NO a(t-1) 
2 

The estimation equations are 

with the boundary conditions 

MAP INTERVAL ESTIMATION FOR LINEAR SYSTEMS 

In general, analytic calculations or 
direct computer implementation of the 
estimation equations are not possible. In 
the case of linear systems, however, we may 
proceed considerably further. The assumpt- 
ion of linearity requires 

dx( t ) 
- -  - F(tIx(t.1 + G(t) u(t) 

dt 
(linear message 

source) 
( 3 2 )  

We conclude by illustrating the 
estimator equations for a phase modulation 
system. Consider the following system: 

5 



and with 

s(t;x(t)) = C(t) x(t) - -  
{linear modulation1 

( 3 3 )  

Consequently, the estimation equations are 

0 (To, To) = 12n 

At this point we with to emphasize 
the importance of this transition matrix. 
Virtually everything associated with 
linear estimation of state variable can be 
related to or determined, from it, We also 
will have cause to consider a partition of 
this matrix of the form 

( 3 5 )  
I 

where the matrices of the partition are 
nxn. We now consider implementing the 
estimation equations in order to obtain 
the MAP estimate of $(t). 

In matrix form, these equations are 

Let &(t) and - 
EP (t) be solution to the estimation 
equations with the initial conditions 

In order to satisfy the conditions 

$( - To)-Zo= Pa(to) 

j+(Tf) = 0, 

1 G ( t >rnu ( t 1 

-eT( t)R-l(t 1 (:( t )-zw(t 1 

(36) 
Because of the linearity, we can satisfy 
the initial and final boundary conditions 

particular solutions to the estimation combination of the columns of the transi- 
equations. tion matrix 

we add to x (t) and E (t), a linear by the superposition of homogeneous and -P P 

9 (t) 
E(t)- E (t) 

Before proceeding, we want to discuss 
briefly venience, the let homogeneous us denote the system. matrix For con- [!!r!l = [=:---I+ 0 (t,To) [ -:-I 

(42) 

or equivalently 
1 G( t )Q(t )GT( t 1 

T -F (t) 
W(t) = 

( 3 7 )  

by W(t). Let @(t,To) be the transi- 
tion matrix associated with the homo- 
geneous version of the estimation equa- 
tions, 

d Q (t,To) 
= W(t) 0 (t,To) 

dt 
( 3 8 )  
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0 pp(t,To) b. ( 4 4 )  

Applying the initial boundary condition 
yields 

P o b  2 . ( 4 5 )  

Applying the final boundary condition 
yields 

Therefore, if we let 

( 4 8 )  
the solutions to the estimation equations 
are 

( 4 9 )  

p(t) = 2 (t) - 0 (t,To) 0 -'(Tf,To) P P P 

-P P (Tf) ( 5 0 )  

Notice that we could have specified 
Ox(t), To) and 0 (t,To) as solutions to 
the homogeneous equation with initial 
conditions of P and In, respectively. 
This would not indicate the relation to 
the transition matrix of the equations, 
and, therefore, to the other aspects of 
the linear estimation problem. Since the 
transition matrix may be precomputed, the 
only terms that must be computed by using 
the received signal E(t) are x (t) and 

P 

0 

-P E (t). P 
In spite of the apparent simplicity 

of the solution, there are practical 
problems in its implementation. The 
system of equations represented by the 
estimator equations is an unstable system. 
Consequently, f o r  large time intervals, 
i.e., (TF-To) is "large," x (t) and E (t) 
become rather lar e. Therefore, to find 
the MAP estimate i(t), one must take the 

-? P 

difference of two large numbers, which 
implies computational difficulties. An- 
other difficulty is that Qx(t,To) and 
Q (t,T 1 tend to approach singular matrices 
for large (t-To). 
curacies in the matrix inversion required 
for the MAP estimate. A s  a result of 
these difficulties, discussed qualitative- 
ly here, we are led to another means of 
implementing the solution to the equations. 

If we consider the estimate at Tf, 

P O  
This leads to inac- 

the end point of the interval, we see 
that this estimate is based upon only past 
data. Therefore, this estimate should 
correspond exactly to the realizable filter 
estimate as formulated by Kalman and Rucy. 

To prove this, we consider the 
estimate at Tf. This is given by 

gCTf) = x (Tf) - c(Tf,To) E,(T~) 
-? 

( 5 1 )  where 

e(Tf,To) = ID~(T~,T~) Q - ~ ( T ~ , T ~ )  P 
( 5 2 )  

We now will derive differential equations 
which x(Tf) and e(Tf,To) must satisfy. 
If we differentiate the equation for 
c(Tf,To) with respect to Tf, and make use 

A 

of the differential equations which 
@x(Tf,To) and 0 (Tf,To) satisfy, we obtain 

P 

( 5 3 )  

de ( Tf ,To) 
gp(Tf, To) + c(Tf, To) x 

dT f 
c c f  T (T~)R-~(T~)c ( T ~ )  Q ~ ( T ~ , T ~ )  - 

T F (Tf) Q (Tf, To)] = F(Tf) Qx(Tf,To) t 

G (T f ) dTf) G (Tf) Op(Tf,To)l 
P T 

( 5 1 0  

Multiplying both sides of above by 
@p(Tf, To) gives 
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tions, completely specifies E(T T ) 

and consequently the structure of the 
optimal filter, i.e., once we have 
determined this transition matrix we can 
completely specifv both the optimal filter 
and optimal MAP interval estimator f o r  
arbitrary p and 5 . 
equation. Levin has described a method 
of solvinc this type of equation by as- 
sociating a set of linear equations with 
it.4 k!e have found that this set of 
linear equations is identical with the 
homogeneous version of those specifying 
the ETA? estimate over the interval. 

f' 0 

0 

Equation 56 is a matrix Riccate 

The optimal filter allows us to solve 
for the MAP estimate in a very convenient 
fashion. We first perform op imal filter- 

We then use this estimate to solve the 
estimator equations backward in time from 
T by using the complete set of boundary 
conditions at Tf. 

ing upon the data to obtain &filt(Tf) ' 

f 

( 5 5 )  

with the initial condition 

€(TO, To) = Po . 
( 5 6 )  

We now differentiate the estimation 
equation of x(Tf). This gives 

dQ( - Tf ) dip(Tf) dtz(Tf ,To) - - - - -  X 

dTf dT f dTf 

Substituting the various expressions for 
the derivatives, we obtain 

with I 

I Tf=To 
Equation 56 and 5 8  are exactly those 

derived by Kalman and Bucy for the optimal 
ealizable filter. The end point estimate 

&Tf) is completely specified by the dif- 
ferential equation 56. In turn, this 
differential equation is completely speci- 
fied by €(Tf,To), the solution of C q .  56. 

In the filtering context, €(Tf,To) has 
been shown to be the error covariance 
matrix of the estimate of g(Tf). We note 
the important point here that the transi- 
tion matrix of the MAP estimator equa- 

In many practical cases, one wishes to d o  
filtering with a fixed delay, not smooth- 
inq over tne entire interval T 0 <tcT f' 
By usin? the MAP estimation equations in 
conjunction with the realizable, or end- 
point filter, we can determine a structure 
for such a filter with fixed delay. 

ror a given set of boundary conditions 
at svie t', the solution to the estimation 
equations (not necessarily the optimal 
solution) at t can be written 

(60) 

Now consider the optimal estimate at 
t = tf-A, 
(Tf-To)>A. 
ditions specified by the optimal filter, 
this estimate is given by 

where A is a fixed delay 

Bv using the boundary con- 
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(Tf-A, T) x 
Tf-A 

I- -I 

(61) 

If we differentiate this equation with 
respect to Tf, we obtain 

1 

1 
TZ - j’ - @ (Tf-A,~) 
Tc-A dTf 
A 

r 

This last term can be evaluated by using 
the relation 

Since W(Tf-A) is independent of the 
integration variable T, it can be taken 
outside the integral. The value of the 
resulting integral is given, however, by 
our original expression for the optimal 
estimate. Consequently, this last term 
is given by 

Tf d 8 (TF-A,?) 
- I  L 

Tf-A dTf 

r 7 

/dr 

By substituting this in Eq. 63, we obtain 
the differential equation 

L J 
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(67a) 

1 
In order to specify the initial conditions 
at Tf= A, one must actually solve for the 
MAP estimate over the interval (To,To+A). 
The form of the filter structure is rather 
complex; however, even in the infinite 
interval, stationary case the filter 
structure is usually complex. In the case 
of a time-invariant system the equation 
simplifies considerably. In this case 

r o  {;:r::;;] t 1 T -1 1-C R (r(Tf-A)) 

/+ where the initial conditions ~ ' ( 0 )  

and ~ ' ( 0 )  are determined by solving the 

d -  - 
dTf 

W( t-to 1 
@ (t,to> = e 

(66) 

By assuming m_u(t) = %(t) = 0, we obtain 

A 

-WA x (Tf -A ) 
= e  _ _ _ - - -  

g(Tf-A) 

MAP equations over the interval (To,To+A). 

L J 

r 1 r 1 

(67) 

for the optimal estimate with a fixed 
delay from the end point of the interval. 
By using the result of eq. 5 8  

we have 
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COVARIANCE OF THE ERROR MATRIX FOR LINEAR SYSTE?fS 

An important aspect of MAP interval estima- 
tion for linear systems is its performance. This 
is commonly expressed in terms of the covariance 
of the error matrix. IJe now will determine a 
differential equation which this matrix must 
satisfy. Then we will solve this differential 
equation in terms of the transition matrix of the 
estimation equations and in terms of the co- 
variance of error matrix for the linear filtering 
problem. 

Let us indicate the estimation error at t by 

- E(t) = &(t) - X(t) 
The covariance matrix is then defined as 

By differentiating the expression for g(t) and by 
substituting eq. (41 ,  we obtain 

where r(To) is the actual error at T * 
0' 

E (T ) is the a priori initial error. - I o  
The original hypothesis assumes E (T )is an 
independent random variable with 

-1 0 

We now want to consider brieflv the solution 
of the error equations. 
exactly parallel to the solution of the estimation 
equations. 

The development is 

We specify the particular solutions 

to be solutions to the non-homogeneous error 
equations with initial conditions 

(68) 

When the expression for K(t) is substituted in 
the costate equation, we have 

In matrix notation these equations, which (It can he verified that p (t) is the same for 
both the estimation and ereor equations.) 
add to this particular solution a solution to the 
homogeneous version of the equations. In order 

will he called the error equations, are lde 

(69) 
I d [;;E]= 'J(t) [;E+] - [ G(t) [g(t) - +,(t) I 

CT(t)R-l(t) [J(t)-%(t) 1 

The boundary conditions which must be satisfied 
are that the boundary conditions be satisfied, we find 

that this added term is the same as the corres- 
ponding term in the estimation equations, so that 
the total solution is E(T~) = 0 

p(t) = %(t) - 0 (t,To)Op-l(Tf,To)l$(T,) 

A quick check will show that the boundary 

P (75) 
Rewriting the initial boundary condition at To 
yields 

(x(To) - &(To) - (a - - x(To)) P&(to) 9 (70~) conditions are satisfied. 
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Now consider the expectation 

T 

Since u(t) and j(t) are independent white 
Gaussian processes, we may evaluate the second 
term of this expression quite eas i ly .  
This is qiven by 

that is, the covariance matrix that we desire is 
one of the partitions of the matrix K2(t) = lt @ (t,r) 

TO 
(77) 

By differentiating the expression for 
P(t,To), we have 

The only nonzero part of the integrand is at the 
upper limit. Therefore, by makinq u s e  of the 
symmetrical properties of the delta function, we 
have for this second term 

When (78) is substituted, we obtain 
Now we must consider the first term 

K(t) + KT(t) (79 )  ( 8 4 )  

By evaluating the solution to the error equations 
at To, we have where 

T 
r(t) G(t) [g(t> - p(t)l 

K(t) = -.{[ z?:y][C(t)R-'(t) [x(t) - %(t)]] }' 
(80) 

We shall now determine the term, K(t). 
Since the transition matrix is the same for both 
the estimation and error equations, we may write 
K(t) as 

these equations may be written 
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, ,  

We are now i n  a p o s i t i o n  t o  e v a l u a t e  K,(t). 

-1 Kl(t)  = 2@( t ,T  ) P 

F i r s t ,  w e  note t h a t  when w e  perform t h 6  expecta- 
t i o n ,  t h e  term invo lv ing  zI(To) w i l l  v a n i s h  
because i t  i s  independent  of g ( t )  and x ( t ) .  
Consequent ly ,  from Eq. (95) w e  are l e d  t o  t h e  t e r m  

L L  J 

[ f y e ( T f  , t ) K 2 ( t )  

We are a b l e  t o  e v a l u a t e  t h i s  term i n  a manner 
similar t o  t h a t  f o r  K 2 ( t ) .  F i r s t  we w r i t e  

Now w e  perform t h e  i n d i c a t e d  e x p e c t a t i o n  of 
Eq. (97) .  Again w e  n o t e  t h a t  t h e  term invo lv ing  
E (T ) v a n i s h e s  because of i t s  independence. -1 0 

There fo re  w e  are l e f t  w i t h  t h e  term 

Tf 

T 

(93) 
which because of t h e  w h i t e  Gaussian assumption f o r  - u ( t )  and w ( t )  becomes 

K( t )  + KT( t )  (98)  

The boundary c o n d i t i o n s  f o r  t h e  e q u a t i o n  are 
determined from t h e  boundary c o n d i t i o n s  f o r  t h e  
e r r o r  equa t ions .  The c o n d i t i o n  J+ (T ) = 0 i m p l i e s  f 

P (TfsTo) = P (T , T  ) = P (Tf,To) = 0 PP Ep f 0 PE 
(99) 

I f  w e  m u l t i p l y  t h e  i n i t i a l  c o n d i t i o n  by i ts  t r a n s -  
pose,  and t h e n  t a k e  t h e  expected v a l u e ,  w e  o b t a i n  

The most conven ien t  way of s o l v i n g  t h i s  
e q u a t i o n  i s  t o  de t e rmine  E(T ,T from t h e  v a r i a n c e  

and then  s o l v e  
MAP covariance c?nriatl.nn hactwarAls frnm T 
Eq. (56) ,  of t h e  end-point estimate, f o  

f '  

6 ( t  -T)dT . !Je s h a l l  now c o n s i d e r  t h e  s o l u t i o n  t o  t h i s  
m a t r i x  d i f f e r e n t i a l  e q u a t i o n  f o r  t h e  cova r i ance  

p r o p e r t i e s  of t h e  a d j o i n t  system. The a d j o i n t  
system is  d e f i n e d  t o  be t h e  s o l u t i o n  t o  t h e  system 

(94) of  t h e  e r r o r .  F i r s t ,  w e  want t o  n o t e  some 1 [ G(i)n(;)CT(T) 

cT(T) R - ~  (TI c(T) 

Noting t h a t  t is  always w i t h i n  t h e  i n t e g r a -  
t i o n  r e g i o n ,  w e  i n t e g r a t e  ove r  t h e  6 - f u n c t i o n  t o  
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'$( = WT( t ,To) Q (t , To) - 
dt (101) 

with the initial condition Q(To,T ) = I 
The relation to the transition ma?rix is given by 

. 

(102) 

If we premultiply the covariance of error 
equation by QT(t,To) and then post-multiply by 
Q(t,To), we obtain 

The left side of Eq. 103 is a derivative, that is 

We now want to show that evaluatinp, the integral 
can be reduced to a single integral. Consider the 
term 

Lyt) = Tf 1 Q T (T,To)K(T)Q(T,To)dr 
(108) t 

(the other term is the transpose, L T (t)). 

This is given by 

L'(t) = tf QT(T,TO)% (T)Q(T,TO)dT a 

t 

!Je note that 

Integrating this yields 

where P1 is a constant to be determined. 
determine this term by specifying at Tf, that 

We 

where E(T T ) is the variance of the realizable 
estimate.f' Consequently, we have 

14 

and 

Consequently, we now have 



Noting that 

we finally obtain 

where 

In the case of a constant parameter system, 
the results simplify because of the exponential 
nature of the transition matrix. 

CONCISIS ION 

\le have found a set of differential equations 
which the optimal estimate must satisfy. 
differential equations had a set of mixed boundary 
conditions associated with them. It is this 
feature that made the solution difficult to 
implement in the general nonlinear case. 

These 

In the linear case we could solve the equa- 
Ne found that a tions by superposition methods. 

convenient method of solution was to perform a 
filtering operation and then solve the estimation 
equations backward from the end point. 

By differentiating with respect to the end 
point, we could determine a filter with a fixed 
delay from the end point. 

We found a set of equations which the error 
in the optimal estimate satisfies when the system 
is linear, The forcing functions for these 
equations were the white processes driving the 

message source and corrupting the observation. 
By performin5 an expectation upon these equations, 
we determined a differential equation involving 
the covariance of error matrix. 1Je then 
integrated this equation to obtain the solution 
in terms of the end point covariance matrix and 
the transition matrix of the estimation equations. 
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Fig. 1. Illustration of the communication model. 

DELAY AND 
MULTl P L Y 

I I l- 
Fig. 2. Block diagram of Eq. (67a). 
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SIGNAL OPTIMIZATION FOR ADDITIVE NOISE CHANNELS WITH FEEDBACK* 

J i m  K .  Omura,+/ $ t a n f o r d  U n i v e r s i t y  

SUMMARY 

I n  t h i s  work,  a communica t ion  r e c e i v e r  is  
r c g a r d c d  as a d y n a m i c a l  s y s t e m  d e s c r i b e d  by a 
d i f f e r e n c e  e q u a t i o n  where  t h e  l a s t  s t a t e  i s  t h e  
test s t a t i s t i c s  upon which a d e c i s i o n  i s  b a s e d .  
When n o i s e l e s s  f e e d b a c k  t o  t h e  t r a n s m i t t e r  is  
a l l o w e d  i t  is  o b s e r v e d  t h a t  t h e  s i g n a l  s e l e c t i o n  
problem i s  e s s e n t i a l l y  a s t o c h a s t i c  c o n t r o l  prob-  
l e m .  With a n  a p p r o p r i a t e  c r i t e r i o n  s i g n a l s  a r e  
f o u n d  t h a t  e x p l o i t  t h e  f e e d b a c k  t o  a c h i e v e  con-  
s i d e r a b l e  r e d u c t i o n  i n  c o d i n g  and d e c o d i n g  com- 
p l e x i t y  o v e r  what  would b e  needed f o r  c o m p a r a b l e  
p e r f o r m a n c e  w i t h  t h e  b e s t  known s i g n a l s  f o r  t h e  
o n e  way c h a n n e l .  The schemes d e v e l o p e d  c o u l d  be 
v e r y  i m p o r t a n t  f o r  s a t e l l i t e  communica t ions  s i n c e  
i t  a l lows  f o r  a s u b s t a n t i a l  d e c r e a s e  i n  t h e  c o d i n g  
e f f o r t  w h i l e  p e r m i t t i n g  t h e  s a t e l l i t e  t o  t r a n s m i t  
i t s  i n f o r m a t i o n  a t  a r a t e  a r b i t r a r i l y  c l o s e  t o  
c h a n n e l  c a p a c i t y .  

T h i s  c o n t r o l  t h e o r y  a p p r o a c h  d e p e n d s  o n l y  o n  
t h e  f i r s t  and  s e c o n d  o r d e r  s t a t i s t i c s  o f  t h e  
n o i s e ,  h a n d l e s  m u l t i p l i c a t i v e  n o i s e  i n  a d d i t i o n  
t o  a d d i t i v e  n o i s e  i n  t h e  f o r w a r d  c h a n n e l ,  a n d  
n a t u r a l l y  e x t e n d s  t o  c o n s i d e r a t i o n  o f  n o i s e  i n  t h e  
f e e d b a c k  l i n k .  

INTRODUCTION 

R e c e n t l y  t h e r e  h a s  been  a c o n s i d e r a b l e  amount 
o f  i n t e r e s t  i n  f e e d b a c k  communica t ion  s y s t e m s ;  i n  
p a r t i c u l a r ,  cases where  t h e  f e e d b a c k  l i n k  is  noise- 
less. One o f  t h e  main  r e a s o n s  f o r  t h i s  i s  t h e  ad-  
v e n t  o f  s p a c e  communica t ion  where  t h e  power i n  t h e  
g r o u n d - t o - s a t e l l i t e  d i r e c t i o n  c a n  be so much 
la rger  t h a n  i n  t h e  r e v e r s e  d i r e c t i o n  t h a t  t h e  f i r s t  
l i n k  c a n  be t a k e n  to  be  a n  ( e s s e n t i a l l y )  n o i s e l e s s  
l i n k .  S i m i l a r  s i t u a t i o n s  may a l so  ar ise  elsewhere.  

The u s u a l  a p p r o a c h  i n  d e s i g n i n g  one-way com- 
m u n i c a t i o n  s y s t e m s  is  t o  f i r s t  select  s i g n a l s  t o  
be  u s e d  by t h e  t r a n s m i t t e r  and t h e n  f i n d  a n  o p t i -  
m u m  r e c e i v e r  b a s e d  o n  t h e s e  s i g n a l s .  For example,  
i f  t h e  t r a n s m i t t e r  is  t o  s e n d  o n e  o f  M messages  a t  
any  g i v e n  t i m e  o v e r  a n  a d d i t i v e  G a u s s i a n  n o i s e  
c h a n n e l  o n e  f i r s t  s e l e c t s  M s i g n a l s  t o  r e p r e s e n t  
t h e  m e s s a g e s .  The minimum p r o b a b i l i t y  o f  error 
r e c e i v e r  i s  t h e n  d e s i g n e d  a r o u n d  t h e s e  s i g n a l s  
which  i n  t h i s  c a s e  is  a l i n e a r  o p e r a t i o n  o n  t h e  
r e c e i v e d  s i g n a l  f o l l o w e d  by a d e c i s i o n  p r o c e s s .  
With t h e  a v a i l a b i l i t y  o f  f e e d b a c k ,  however ,  o n e  
can v i e w  t h e  problem f rom t h e  o p p o s i t e  p o i n t  o f  
v iew.  Namely, f i x  t h e  r e c e i v e r  and d e s i g n  s i g n a l s  
a r o u n d  t h e  r e c e i v e r  so a s  t o  m i n i m i z e  p r o b a b i l i t y  
o f  error. I n  p a r t i c u l a r ,  i f  o n e  r e g a r d s  t h e  

* 
T h i s  work w a s  s u p p o r t e d  by t h e  A i r  F o r c e  u n d e r  
C o n t r a c t  AF 49(683)-1517 and by t h e  Navy u n d e r  
C o n t r a c t  Nonr 2 2 5 ( 8 3 ) .  

'The a u t h o r  i s  now w i t h  t h e  S t a n f o r d  R e s e a r c h  
I n s t i t u t e  i n  Menlo P a r k ,  C a l i f o r n i a .  

r e c e i v e r  a s  a d y n a m i c a l  s y s t e m  whose s t a t e  i s  t h e  
t e s t  s t a t i s t i c s  upon which  a d e c i s i o n  i s  b a s e d ,  
t h e  s i g n a l  problem i s  e s s e n t i a l l y  a s t o c h a s t i c  
c o n t r o l  problem.  

I n  t h i s  work, t h i s  c o n t r o l  p o i n t  o f  v iew i s  
t a k e n  i n  d e s i g n i n g  s i g n a l s  f o r  v a r i o u s  c h a n n e l s .  
M o t i v a t e d  by t h e  work of S c h a l k w i j k  and  K a i l a t h , ' , "  
t h i s  work g e n e r a l i z e s  mkch o f  t h e i r  r e s u l t s  and  
e x t e n d s  them t o  c o n s i d e r a t i o n  o f  m u l t i p l i c a t i v e  
c h a n n e l s  and n o i s y  f e e d b a c k  c h a n n e l s .  

The word " c h a n n e l "  s t a n d s  f o r  p h y s i c a l  p e r -  
t u r b a t i o n  i n  t h e  t r a n s m i s s i o n  medium and i n  t h e  
r e c e i v e r  f r o n t  end ,  as w e l l  as f o r  t r a n s m i t t e r  
c o n s t r a i n t s .  Examples  o f  t r a n s m i t t e r  c o n s t r a i n t s  
are a n  a v e r a g e  power c o n s t r a i n t ,  a p e a k  power con-  
s t r a i n t ,  a c o n s t r a i n t  o n  t h e  s i g n a l  bandwidth ,  etc. 

B e f o r e  d i s c u s s i o n  o f  t h e  main r e s u l t s ,  a 
b r i e f  d i s c u s s i o n  o f  r e l a t e d  work i s  g i v e n  n e x t .  

Background 

Most p r e v i o u s  work o n  f e e d b a c k  communica t ion  
s y s t e m s  c o n s i d e r  o n l y  n o i s e l e s s  f e e d b a c k .  I t  
seems r e a s o n a b l e  t h a t  t h e  a v a i l a b i l i t y  o f  a n o i s e -  
less f e e d b a c k  l i n k  s h o u l d  s u b s t a n t i a l l y  improve  
communica t ion  o v e r  t h e  n o i s y  f o r w a r d  l i n k .  There-  
f o r e ,  S h a n n o n ' s  r e s u l t 3  t h a t  t h e  c h a n n e l  c a p a c i t y  
o f  a memoryless  n o i s y  c h a n n e l  i s  n o t  i n c r e a s e d  by 
n o i s e l e s s  f e e d b a c k  is  r a t h e r  s u r p r i s i n g .  S t i l l ,  
some a d v a n t a g e s  s h o u l d  a c c r u e  from t h e  p r e s e n c e  of  
a n o i s e l e s s  f e e d b a c k  l i n k  and,  i n  f a c t ,  t h e  ad- 
v a n t a g e  i s  t h a t  n o i s e l e s s  f e e d b a c k  e n a b l e s  a sub-  
s t a n t i a l  r e d u c t i o n  i n  t h e  c o m p l e x i t y  o f  c o d i n g  and 
d e c o d i n g  r e q u i r e d  t o  a c h i e v e  a g i v e n  p e r f o r m a n c e  
o v e r  t h e  n o i s y  l i n k .  

A g e n e r a l  d i s c u s s i o n  of  f e e d b a c k  communicat ion 
s y s t e m s ,  w i t h  r e f e r e n c e  t o  ea r l i e r  work by Chang 
and  o t h e r s ,  i s  g i v e n  by Green4 who d i s t i n g u i s h e s  
be tween p o s t -  and p r e d e c i s i o n  f e e d b a c k  s y s t e m s .  
I n  p o s t d e c i s i o n  f e e d b a c k  s y s t e m s  t h e  t r a n s m i t t e r  
is i n f o r m e d  o n l y  a b o u t  t h e  r e c e i v e r ' s  d e c i s i o n ;  
i n  p r e d e c i s i o n  f e e d b a c k  s y s t e m s ,  t h e  s t a t e  o f  un- 
c e r t a i n t y  o f  t h e  r e c e i v e r  as t o  w h i c h  message  was 
s e n t  is f e d  back .  P o s t d e c i s i o n  f e e d b a c k  s y s t e m s  
r e q u i r e  less c a p a c i t y  i n  t h e  backward d i r e c t i o n ;  
however ,  t h e  improvement  o v e r  one-way t r a n s m i s s i o n  
w i l l  a l so  be  less t h a n  t h a t  o b t a i n a b l e  w i t h  p r e -  
d e c i s i o n  f e e d b a c k .  

V i t e r b i '  d i s c u s s e s  a p o s t d e c i s i o n  f e e d b a c k  
s y s t e m  f o r  t h e  w h i t e  G a u s s i a n  n o i s e  c h a n n e l .  A 
d e c i s i o n  i s  made when t h e  a p o s t e r i o r i  p r o b a b i l i t y  
computed  by t h e  r e c e i v e r  e x c e e d s  a c e r t a i n  t h r e s h l d  
d e t e r m i n e d  by t h e  p r o b a b i l i t y  o f  error.  The t r a n s -  
m i t t e r  i s  i n f o r m e d  by means o f  p o s t d e c i s i o n  f e e d -  
back  t h a t  t h e  r e c e i v e r  h a s  made i t s  d e c i s i o n ,  and  
i t  t h e n  s t a r t s  s e n d i n g  t h e  n e x t  message .  F o r  r a t e s  
h i g h e r  t h a n  h a l f  t h e  c h a n n e l  c a p a c i t y ,  t h e  re l ia-  
b i l i t y  i s  i n c r e a s e d  r o u g h l y  by a f a c t o r  o f  f o u r  a s  
compared  t o  one-way communica t ion .  
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Tur in" ,7  h a s  a p r e d e c i s i o n  f e e d b a c k  scheme 
a p p l y i n g  t o  t h e  w h i t e  G a u s s i a n  n o i s e  c h a n n e l ,  and  
g i v i n g  a n  e v e n  g r e a t e r  improvement  over  one-way 
communica t ion  t h a n  V i t e r b i ' s  scheme d o e s .  The re- 
c e i v e r  computes  a l i k e l i h o o d  r a t i o  and makes a de- 
c i s i o n  when t h i s  l i k e l i h o o d  r a t i o  e x c e e d s  a 
t h r e s h o l d  s e t  by t h e  p r o b a b i l i t y  o f  error.  The 
v a l u e  o f  t h e  l i k e l i h o o d  r a t i o  i s  f e d  b a c k  t o  t h e  
t r a n s m i t t e r  c o n t i n u a l l y  d u r i n g  t h e  d e c i s i o n - m a k i n g  
p r o c e s s .  The t r a n s m i t t e d  s i g n a l  i s  a f u n c t i o n  o f  
t h e  b i n a r y  d i g i t  ( t h a t  is, 0 or 1) b e i n g  s e n t  and 
of t h e  v a l u e  o f  t h e  l i k e l i h o o d  r a t io ,  and  i s  ad- 
j u s t e d  so a s  t o  make t h i s  r a t io  i n c r e a s e  as f a s t  
a s  p o s s i b l e .  Average and peak  power c o n s t r a i n t s  
a r e  imposed.  The a v e r a g e  t i m e  7 f o r  d e c i d i n g  o n  
a b i n a r y  d i g i t  t u r n s  o u t  t o  b e  f = (Pav/N0)-ll,n2 
where  Pa, i s  t h e  a v e r a g e  power and No i s  t h e  (one-  
s i d e d )  n o i s e  power s p e c t r a l  d e n s i t y .  The proba-  
b i l i t y  of error  Pe v a n i s h e s  i f  i n f i n i t e  p e a k  power 
and i n f i n i t e  bandwidth a r e  a l l o w e d .  Hence, a ra te  
i s  a c h i e v e d  t h a t  i s  e q u a l  t o  t h e  c h a n n e l  c a p a c i t y  

D 
av  c = - n a t s / s e c  .*  

NO 

S c h a l k w i j k  and K a i l a t h l  ," d e v e l o p e d  a p r e d e -  
c i s i o n  f e e d b a c k  scheme m o t i v a t e d  by t h e  Robbins-  
Munro' s t o c h a s t i c  a p p r o x i m a t i o n  p r o c e d u r e .  With a 
n o i s e l e s s  f e e d b a c k  l i n k  a v a i l a b l e ,  t h e y  c o n s i d e r e d  
t h e  problem w h e r e  t h e  t r a n s m i t t e r  h a s  t o  s e n d  o n e  
of  M p o s s i b l e  messages  t o  a r e c e i v e r  where  e a c h  
message t a k e s  T seconds  t o  s e n d .  D e f i n i n g  s i g -  
n a l i n g  r a t e  a s  R = ( I n  M)/T n a t s / s e c  and h a v i n g  
o n l y  t h e  t r a n s m i t t e r  c o n s t r a i n t  of a v e r a g e  power, 
Pa,, t h i s  scheme a c h i e v e s  rates u p  t o  c h a n n e l  
c a p a c i t y ,  C = Pav/No, w i t h  error p r o b a b i l i t y  g i v e n  
bv 

S c h a l k w i j k "  m o d i f i e d  t h i s  scheme by r e q u i r i n g  
t h e  t r a n s m i t t e d  a v e r a g e  power t o  be c o n s t a n t  a t  
e a c h  i t e r a t i o n .  Imposing b o t h  a n  a v e r a g e  power 

* " N a t s "  i s  d e f i n e d  as n a t u r a l  u n i t s  o f  i n f o r m a t i o n  
i n  a c c o r d a n c e  w i t h  IEEE s t a n d a r d s .  

+ T h i s  is  a c o r r e c t e d  v e r s i o n  o f  t h e i r  r e s u l t .  I n  
Ref .  1, Eq. 11 becomes 

2 

1 2  
paV T = Y + o2 (an  N + .577) 

so t h a t  o p t i m i z i n g  w i t h  r e s p e c t  t o  d g i v e s  
$ = 12 C T ~  = 6 No. (Compare w i t h  Eq. 15 i n  
Ref .  1.) 

c o n s t r a i n t ,  Pav, a n d  a s igna l  bandwidth  restric- 
t i o n ,  W, t h i s  scheme a c h i e v e d  ra tes  u p  t o  c h a n n e l  
c a p a c i t y ,  C = W An (1 + P,,,/N,W), w i t h  t h e  error 

I. v . 
p r o b a b i l i t y  

T h i s  c o d i n g  scheme d e v e l o p e d  by S c h a l k w i j k  g a v e  
t h e  f i r s t  d e t e r m i n i s t i c  p r o c e d u r e  t o  a c h i e v e  ra tes  
u p  t o  c a p a c i t y  f o r  t h e  band l i m i t e d  w h i t e  Gaussian 
n o i s e  c h a n n e l .  

These  schemes  o f  S c h a l k w i j k  and  K a i l a t h  m o t i -  
v a t e d  t h e  work p r e s e n t e d  h e r e .  

The Problem 

Here d i s c r e t e - t i m e  c h a n n e l s  t h a t  are d e r i v e d  
f r o m  t h e  c o n t i n u o u s - t i m e  c h a n n e l s  a r e  c o n s i d e r e d .  
F o l l o w i n g  t h e  c o n t r o l  t h e o r y  p o i n t  of v i e w  a com- 
m u n i c a t i o n  r e c e i v e d  i s  r e g a r d e d  a s  a d y n a m i c a l  
s y s t e m  d e s c r i b e d  by a d i f f e r e n c e  e q u a t i o n .  The 
v a r i a b l e  ( s t a t e )  o f  t h i s  e q u a t i o n  i s  t h e  t e s t  
s t a t i s t i c s  upon w h i c h  a d e c i s i o n  is  b a s e d  a t  some 
f i x e d  t e r m i n a l  i t e r a t i o n ,  N .  I f  n o i s e l e s s  f e e d -  
back  t o  t h e  t r a n s m i t t e r  i s  a l l o w e d ,  i t  i s  o b s e r v e d  
t h a t  t h e  s i g n a l  s e l e c t i o n  problem is  a s t o c h a s t i c  
c o n t r o l  problem w h e r e  t h e  s t a t e  o f  t h e  s y s t e m  i s  
c o m p l e t e l y  o b s e r v a b l e .  W i t h  n o i s e  i n  t h e  f e e d b a c k  
i t  i s  a s t o c h a s t i c  c o n t r o l  problem w i t h  n o i s y  ob-  
s e r v a t i o n s  o f  t h e  s ta tes .  

C o n s i d e r i n g  t h e  s i g n a l  s e l e c t i o n  problem f rom 
t h i s  c o n t r o l  p o i n t  o f  v i e w  t h e  f o l l o w i n g  assump- 
t i o n s  a r e  made: 

1. The r e c e i v e r  i s  l i n e a r  and d i s c r e t e  i n  
t i m e  w i t h  i t s  s t a t e s  g i v e n  by t h e  d i f f e r e n c e  equa-  
t i o n ,  

xkfl = Qkxk + G k r k  k = 0 , 1 , 2 , .  . . , N  - 1 

(4 ) 
xo = 0 

w h e r e  x is  t h e  s t a t e  a t  t h e  k th  i t e r a t i o n ,  
k 

are f r e e  p a r a m e t e r s  o f  t h e  r e c e i v e r ,  

rk i s  t h e  r e c e i v e d  s i g n a l  f r o m  t h e  
c h a n n e l  a t  t h e  k th  i t e r a t i o n ,  

and t h e r e  are N i t e r a t i o n s  t a k i n g  a 
t o t a l  t i m e  o f  T s e c o n d s .  

2. One o f  M p o s s i b l e  e q u a l l y  l i k e l y  messages  
i s  s e n t  a t  any  g i v e n  t i m e .  

N' 3. The r e c e i v e r  b a s e s  i t s  d e c i s i o n  on  x 
w h e r e  t h e  d e c i s i o n  r e g i o n s  c o n s i s t  o f  t h e  u n i t  
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i n t e r v a l ,  [- 1 / 2 ,  1 /21 ,  d i v i d e d  i n t o  M e q u a l  
l e n g t h  d i s j o i n t  s u b i n t e r v a l s .  The j t h  message  is 
c h o s e n  o n l y  i f  xN l i e s  i n  t h e  j t h  s u b i n t e r v a l  o f  
[- 1/2 ,  1 /21 .  

4 .  The c r i t e r i o n  f o r  c h o o s i n g  s i g n a l s  i s  
t h e  m i n i m i z a t i o n  o f  E ( x N  - @ I 2  u n d e r  t h e  con- 
s t r a i n t  t h a t  t h e  a v e r a g e  power o f  t h e  t r a n s m i t t e r ,  
Pa,, is  f i x e d .  Here 8 i s  t h e  c e n t e r  o f  t h e  sub-  
i n t e r v a l  c o r r e s p o n d i n g  t o  t h e  s e n t  message.  The 
s i g n a l  s e q u e n c e  i s  d e n o t e d  

x k  
I ,  - I 

*Message i . 
f 

7 1 1 1 1 8  k 
1 2 3 4 5  

- _  2 I l-----J Decision b a s e d  on  X N' 

F i g .  2 

[ m r - '  
k k = O  

and t h e  c o n s t r a i n t  e q u a t i o n  i s  

i t e r a t i o n ,  

r l k  

5 .  The message  p o i n t s ,  Os@, a r e  e s s e n t i a l l y  
u n i f o r m l y  d i s t r i b u t e d  o v e r  [- 1/2,  1 /21  ( f o r  l a r g e  
M) w i t h  v a r i a n c e ,  

T h i s  s i t u a t i o n  i s  i l l u s t r a t e d  i n  F i g .  1, 
where  as y e t  no  a s s u m p t i o n s  h a v e  b e e n  made con-  
c e r n i n g  t h e  f e e d b a c k  l i n k .  A s  a n  example ,  i f  t h e  
f e e d b a c k  l i n k  is  n o i s e l e s s ,  t h e n  y k  = Sk = xk fo r  
k = l ,  2, ..., N -  1. 

Source 

5i+ 

F i g .  1 

F i g u r e  2 is  a s k e t c h  o f  a t y p i c a l  s e q u e n c e  
showing how 

might  b e h a v e  a n d  how t h e  d e c i s i o n  i s  made. 

With t h e s e  a s s u m p t i o n s ,  t h e  g o a l  is  t h e n  t o  
f i n d  optimum s i g n a l s ,  

, 

as d e f i n e d  by a s s u m p t i o n  4 ,  f o r  a g i v e n  f o r w a r d  
and  f e e d b a c k  c h a n n e l .  In g e n e r a l  a t  t h e  k t h  
i t e r a t i o n  t h e  s i g n a l  component is  b a s e d  o n  9, and 
t h e  o b s e r v a t i o n s  of t h e  r e c e i v e r  up t o  t h e  k t h  

I n s t e a d  o f  m i n i m i z i n g  p r o b a b i l i t y  o f  error,  t h e  
c r i t e r i o n  c h o s e n  i s  t o  m i n i m i z e  t h e  d i s t a n c e  
E(xN - 
p r o b a b i l i t y  o f  error f o r  t h e  G a u s s i a n  a d d i t i v e  
n o i s e  c h a n n e l s .  One c a n  see f rom F i g .  2 t h a t  f o r  
t h e  n o i s e l e s s  f e e d b a c k  c a s e  t h e  t r a n s m i t t e r  t r i es  
t o  " c o n t r o l "  t h e  s t a t e s  so  a s  t o  g e t  xN a s  c l o s e  
t o  8 a s  p o s s i b l e .  With n o i s y  f e e d b a c k  t h i s  con-  
t r o l l i n g  i s  hampered by p o o r  o b s e r v a t i o n s  o f  t h e  
s ta tes .  

T h i s  is  c l o s e l y  r e l a t e d  t o  m i n i m i z i n g  

S t a t e d  i n  t h i s  manner ,  t h i s  is  e s s e n t i a l l y  a 
n o n s e q u e n t i a l  e s t i m a t i o n  problem upon which  i s  i m -  
posed  a m u l t i p l e  h y p o t h e s i s  s t r u c t u r e .  I t  i s  non- 
s e q u e n t i a l  s i n c e  t h e  t i m e  o f  d e c i s i o n  i s  f i x e d  
r a t h e r  t h a n  a random v a r i a b l e .  The c r i t e r i o n  
E ( X ~  - e ) 2  is  r e a l l y  a n  e s t i m a t i o n  c r i t e r i o n  so 
t h a t  i f  a t r a n s m i t t e r  ( s a t e l l i t e )  i s  t o  s e n d  some 
measurement  d a t a  n o r m a l i z e d  t o  [-  1/2 ,  1 /21 ,  t h i s  
d a t a  would n o t  be q u a n t i z e d  i n t o  o n e  o f  M l e v e l s  
b u t  s e n t  d i r e c t l y .  However, by i m p o s i n g  a q u a n t i -  
z a t i o n  o n e  c a n  t h e n  i n t e r p r e t  t h e  r e s u l t  a s  a 
m u l t i p l e  h y p o t h e s i s  problem where  p r o b a b i l i t y  of 
errors a n d  r a t e s  o f  i n f o r m a t i o n  are e v a l u a t e d .  

F i n a l l y  i t  s h o u l d  be n o t e d  t h a t  i n  d e s i g n i n g  
a communica t ion  scheme o n e  s h o u l d  a t t a c h  a c o s t  t o  
c o m p l e x i t y  of e q u i p m e n t .  I t  w i l l  t u r n  o u t  t h a t  
s o l u t i o n s  to  t h i s  problem r e s u l t  i n  v e r y  s i m p l e  
schemes w i t h o u t  c o n s i d e r i n g  s u c h  cos ts .  A n o t h e r  
i m p o r t a n t  b y p r o d u c t  is  t h e  i n s e n s i t i v i t y  o f  t h e  
schemes t o  t h e  p a r t i c u l a r  n o i s e  s t a t i s t i c s .  A l s o  
o n c e  t h e  optimum s i g n a l  s e q u e n c e  i s  f o u n d  a s e c o n d  
o r d e r  o p t i m i z a t i o n  w i t h  r e s p e c t  to  r e c e i v e r  
p a r a m e t e r s  

I , N - 1  < , N - l  
and Fki 

k = O  k = O  i @ k j  

i s  p o s s i b l e .  T h i s  i s  d o n e  f o r  t h e  a d d i t i v e  n o i s e  
c h a n n e l  and t h e  m u l t i p l i c a t i v e  n o i s e  c h a n n e l  when 
n o i s e l e s s  f e e d b a c k  i s  assumed.  

3 



R e s u l t s  

T h i s  problem is s o l v e d  f o r  t h e  a d d i t i v e  n o i s e  
c h a n n e l  w i t h  n o i s e l e s s  f e e d b a c k .  Assuming f u r t h e r  
t h a t  t h e  n o i s e  is  a w h i t e  G a u s s i a n  n o i s e  p r o c e s s  
w i t h  s p e c t r a l  d e n s i t y  No/2, t h e  p r o b a b i l i t y  o f  
error f o r  t h e  wideband c h a n n e l  (no bandwidth  re- 
s t r i c t i o n  on  t h e  s i g n a l s  i n  t h e  c h a n n e l )  is  found 
t o  b e  

where  

'av 

No 
c = -  . 

When s i g n a l s  are l i m i t e d  i n  bandwidth  t o  [- W, W], 
t h e  error  p r o b a b i l i t y  i s  

where  

The optimum schemes d e v e l o p e d  i n  
are d e p e n d e n t  o n l y  on t h e  1st and  2nd 

t h i s  work 
o r d e r  s t a -  

t i s t i c s  o f  a l l  random v a r i a b l e s ,  a l t h o u g h  a l l  
error p r o b a b i l i t i e s  are e v a l u a t e d  u n d e r  a G a u s s i a n  
a s s u m p t i o n .  Throughout  t h i s  work a c o n t r o l  t h e o r y  
a p p r o a c h  i s  t a k e n  u s i n g  dynamic programming a s  t h e  
main t o o l .  T h i s  approach  is  new and  v e r s a t i l e  as 
made e v i d e n t  by i t s  a b i l i t y  t o  h a n d l e  n o i s y  f e e d -  
back  and m u l t i p l i c a t i v e  n o i s e  p r o b l e m s  a s  w e l l  as 
t h e  u s u a l  a d d i t i v e  n o i s e  f o r w a r d  c h a n n e l  w i t h  
n o i s e l e s s  f e e d b a c k .  T h e s e  c a s e s  w i l l  a p p e a r  s o o n  
i n  a S t a n f o r d  E l e c t r o n i c s  L a b o r a t o r i e s  r e p o r t .  

ADDITIVE NOISE CHANNELS W I T H  NOISELESS FEEDBACK 

T h i s  p a p e r  i s  d e v o t e d  t o  d e v e l o p i n g  an o p t i -  
mal f e e d b a c k  communicat ion scheme f o r  t h e  a d d i t i v e  
n o i s e  f o r w a r d  c h a n n e l  w i t h  a n o i s e l e s s  f e e d b a c k  
l i n k .  The a d d i t i v e  n o i s e  i s  assumed t o  be  w h i t e  
w i t h  d o u b l e - s i d e d  s p e c t r a l  d e n s i t y  N0/2. 
o p t i m i z a t i o n  i s  c a r r i e d  o u t  i n  t w o  s t e p s :  f i r s t ,  
s i g n a l  o p t i m i z a t i o n  b a s e d  o n  t h e  c o n t r o l  t h e o r y  
p o i n t  of v iew,  and t h e n  r e c e i v e r  p a r a m e t e r  o p t i -  
m i z a t i o n  u s i n g  o r d i n a r y  c a l c u l u s .  T h i s  optimum 
scheme i s  t h e n  e v a l u a t e d  i n  terms o f  p r o b a b i l i t y  
o f  e r r o r  and i n f o r m a t i o n  r a t e s  f o r  t h e  w h i t e  
G a u s s i a n  n o i s e  c h a n n e l .  

The 

The D i s c r e t e - T i m e  Channel  

I t  i s  c o n v e n i e n t  t o  work w i t h  d i s c r e t e - t i m e  
c h a n n e l s  t h a t  are e q u i v a l e n t  t o  t h e  c o n t i n u o u s -  
t i m e  c h a n n e l s  u n d e r  c o n s i d e r a t i o n .  T h i s  makes i t  
p o s s i b l e  t o  work w i t h  f i n i t e  s e q u e n c e s  of  numbers 
r a t h e r  t h a n  w i t h  c o n t i n u o u s - t i m e  f u n c t i o n s .  I n  

p a r t i c u l a r ,  t h e  trarlsrnitted s i g n a l  r e p r e s e n t i n g  a 
m e s s a g e  w i l l  be  a s e q u e n c e  of numbers ,  

i m k r  k = O  - , 

s o  t h a t  s i g n a l  o p t i m i z a t i o n  cons is t s  o f  f i n d i n g  N 
optimum numbers  r a t h e r  t h a n  f i n d i n g  a f u n c t i o n  o f  
t i m e  . 

C o n s i d e r  t h e  zero mean a d d i t i v e  n o i s e  c h a n n e l  
i n  F i g .  3 .  To o b t a i n  a d i s c r e t e - t i m e  c h a n n e l  f rom 

t h i s  c o n t i n u o u s - t i m e  c h a n n e l ,  assume t h a t  t h e  
message  i n f o r m a t i o n  i s  t r a n s m i t t e d  by s u i t a b l y  
a m p l i t u d e  m o d u l a t i n g  t h e  a m p l i t u d e  o f  a known 
b a s i c  waveform @ ( t ) .  The s i g n a l  i n  t h e  c h a n n e l  
w i l l  t h u s  

w h e r e  T/N 
waveform, 
a n d  t o  b e  

be  of t h e  f o r m  

N- 1 - 

w i l l  be  s p e c i f i e d  l a t e r .  The b a s i c  
@ ( t ) ,  is  r e q u i r e d  to  have  u n i t  e n e r g y  
o r t h o g o n a l  f o r  s h i f t s  o f  T/N: t h a t  i s .  

@ ( t )  s h o u l d  s a t i s f y  

T T b(t - i - ) @ ( t  - j - ) d t  = 6.. 
N N 1 J  

. (10) 

R e c e p t i o n  w i l l  be  a c h i e v e d  by u s i n g  a f i l t e r  
matched  t o  "t), t h a t  is ,  a f i l t e r  w i t h  i m p u l s e  
r e s p o n s e  h ( t )  
f i l t e r  a t  t = 
t h e  s e q u e n c e  

w h e r e  rk = mk 

= O(- t ) .  The 
k(T/N), k = 0, 

+ nk, and  

o u t p u t  t o  t h i s  matched 
1, ..., N - 1 w i l l  b e  

1 

0 

(11) T 
n = J n ( t ) @ ( t  - k ; )dt  . 

k 

With t h i s  m o d u l a t i o n  a n d  r e c e p t i o n ,  t h e  
d i s c r e t e - t i m e  c h a n n e l  shown i n  F i g .  4 is  o b t a i n e d .  

mk 6 r k = " k + " k  

F i g .  4 
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I f  t h e  a d d i t i v e  n o i s e  of t h e  cont inuous- t ime 
channel  i s  w h i t e  w i t h  double-s ided s p e c t r a l  den- 
s i t y  No/2 ,  i t  is  easy  t o  show t h a t  t h e  n o i s e  

w i l l  be u n c o r r e l a t e d  z e r o  mean random v a r i a b l e s  
w i t h  

2 
1 J  1 J  ’ E n . n .  = 5 b . .  

2 
where 5 = N0/2. When t h e  a d d i t i v e  n o i s e  is  
Gaussian,  t h e s e  random v a r i a b l e s  w i l l  be Gaussian 
and t h e r e f o r e  independent .  I n  t h e  Gaussian case, 
i t  i s  easy t o  see t h a t  t h e  d i s c r e t e - t i m e  channel  
t h u s  o b t a i n e d  i s  completely e q u i v a l e n t  t o  t h e  
o r i g i n a l  cont inuous- t ime channe l .  This  fo l lows  
from t h e  f a c t  t h a t  t h e  matched f i l t e r  i s  t h e  i d e a l  
r e c e i v e r  f o r  t h e  wh i t e  Gaussian n o i s e  channe l s  and 
t h e r e f o r e  p r e s e r v e s  a l l  t h e  in fo rma t ion  i n  t h e  re- 
ce ived  waveform t h a t  i s  r e l e v a n t  t o  t h e  dec i s ion -  
making p r o c e s s .  

F i n a l l y ,  n o t e  t h a t  by v i r t u e  of t h e  o r tho -  
no rma l i ty  o f  

N - 1  

’ k  = 0 
{O[t - k(T/N)]) 

t h e  t r a n s m i t t e d  energy of  

S i g n a l  Opt i m i  z a t i o n  

The s i g n a l  o p t i m i z a t i o n  i s  done from t h e  
c o n t r o l  t h e o r y  p o i n t  o f  view where t h e  r e c e i v e r  i s  
r ega rded  a s  a dynamical system which can be par- 
t i a l l y  c o n t r o l l e d  by t h e  t r a n s m i t t e d  s i g n a l  se- 
quence 

T m k r  k = O  - 

The problem i s  to  choose t h e  N numbers 

r P - 1  

i n  some optimum manner when t h e  t r a n s m i t t e r  has  
complete  knowledge th rough  n o i s e l e s s  feedback of 
how t h e  r e c e i v e r  is  behaving. 

Recall from t h e  I n t r o d u c t i o n  t h a t  t h e  re- 
c e i v e r  f i r s t  does a l i n e a r  o p e r a t i o n  on  t h e  re- 
ce ived  s i g n a l  sequence 

T r k T  k = O  - 

d e s c r i b e d  by t h e  d i f f e r e n c e  equa t ion  

xk+l = @ l c ~ l c  + G k r , ?  , k = 0,1,2,. . . , N  - 1 

(13) 
n 

where 

x = o  , 
0 

rk = mk + nk . 
A d e c i s i o n  i s  based on xN where t h e  j t h  message 
i s  chosen on ly  i f  xN l i e s  i n  t h e  j th  s u b i n t e r v a l  
on [- 1/2,  1/21. The on ly  way t h e  transmitter can 
c o n t r o l  t h e  v a l u e  of xN i s  through t h e  s i g n a l  se- 
quence 

i m k T  - 
k = O  

What t h e  t r a n s m i t t e r  would i d e a l l y  l i k e  t o  do is 
t o  choose t h e  sequence t h a t  f o r c e s  xN i n t o  t h e  
c o r r e c t  s u b i n t e r v a l  ( co r re spond ing  t o  t h e  message 
t h e  t r a n s m i t t e r  wants t o  send)  wi th  minimum proba- 
b i l i t y  of  e r r o r .  I n s t e a d  of  minimum p r o b a b i l i t y  
of  e r r o r ,  which i s  d i f f i c u l t  t o  work wi th ,  how- 
eve r ,  a minimum mean s q u a r e  d i s t a n c e  c r i t e r i o n  is  
used.  Choosing 0 t o  be t h e  c e n t e r  p o i n t  of  t h e  
c o r r e c t  s u b i n t e r v a l ,  t h e  c r i t e r i o n  i s  t o  choose 
t h e  s i g n a l  sequence t h a t  minimizes E(xN - 
Here t h e  e x p e c t a t i o n  is  t aken  o v e r  a l l  t h e  n o i s e  
random v a r i a b l e s  

{ n , f  - 
k = O  

S ince  t h e  t r a n s m i t t e r  power i s  l i m i t e d ,  i t  i s  
necessa ry  t o  impose some s o r t  of power c o n s t r a i n t  
on t h e  s i g n a l  sequence. A t i m e  and s t a t i s t i c a l  
average power c o n s t r a i n t  i s  imposed so  t h a t  

1 N-l 2 
k pav(e)  = T E C m 

k=O 

is  t h e  c o n s t r a i n t  equa t ion .  H e r e  a g a i n  expecta-  
t i o n  i s  t aken  ove r  t h e  random v a r i a b l e s  

L e t t i n g  1 be a Lagrange m u l t i p l i e r ,  t h e  t o t a l  c r i -  
t e r i o n  i s  

(15) 

Thus, s i g n a l  o p t i m i z a t i o n  c o n s i s t s  of f i n d i n g  t h e  
sequence 

J r -1  

k = O  
lmk 
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t h a t  m i n i m i z e s  Eq. (15)  where  h i s  f o u n d  t h r o u g h  
Eq. ( 1 4 ) .  T h i s  s i g n a l  s e q u e n c e  w i l l  be  r e f e r r e d  
t o  as t h e  optimum s i g n a l  and  l a b e l e d  

- 
k = O  

The s o l u t i o n  t o  t h i s  d i s c r e t e - t i m e  s t o c h a s t i c  
c o n t r o l  problem where t h e  dynamica l  s y s t e m  i s  
l i n e a r  [Eq. (13)] and t h e  c r i t e r i o n  is  q u a d r a t i c  
[Eq. ( 1 5 ) ]  is  w e l l  known i n  t h e  c o n t r o l  t h e o r y  
l i t ~ r a t u r e . ~  T h i s  s o l u t i o n ,  however ,  r e q u i r e s  
t h a t  

{.k>” - 
k = O  

be  u n c o r r e l a t e d  random v a r i a b l e s ,  which  is  t h e  
same a s  a s s u m i n g  t h e  a d d i t i v e  n o i s e  is  w h i t e  i n  
t h e  c o n t i n u o u s - t i m e  c h a n n e l .  Making t h i s  w h i t e  
n o i s e  a s s u m p t i o n ,  t h e  optimum s i g n a l s  a r e  now de- 
r i v e d  u s i n g  dynamic programming.” 

D e f i n e  

f o r  

j = 0 , 1 , 2  ,..., N - 1 

and 

Note  t h a t  f N - k ( x k )  i s  t h e  minimum e x p e c t e d  cost 
f rom t h e  k t h  i t e r a t i o n  t o  t h e  N t h  i t e r a t i o n  
assuming x k  i s  t h e  s t a t e  of t h e  r e c e i v e r  a t  t h e  
k t h  i t e r a t i o n .  A s y s t e m a t i c  s o l u t i o n  p r o c e d u r e  
may be  o b t a i n e d  by making u s e  o f  t h e  f u n d a m e n t a l  
p r i n c i p l e  o f  dynamic programming:  The P r i n c i p l e  
of  O p t i m a l i t y .  This  s t a t e s : ’  

An o p t i m a l  p o l i c y  h a s  t h e  p r o p e r t y  t h a t  
w h a t e v e r  t h e  i n i t i a l  s t a t e  and t h e  
i n i t i a l  d e c i s i o n  a r e ,  t h e  r e m a i n i n g  de-  
c i s i o n s  must c o n s t i t u t e  a n  o p t i m a l  
p o l i c y  w i t h  r e g a r d  t o  t h e  s t a t e  re- 
s u l t i n g  f r o m  t h e  i n i t i a l  d e c i s i o n .  

Here i n i t i a l  d e c i s i o n  r e f e r s  t o  ea r l i e r  c h o i c e s  
of mo, ml,  ..., mk-l when c o n s i d e r i n g  t h e  c h o i c e  

O f  mk, mk+l, mN- 1 . 
The P r i n c i p l e  of  O p t i m a l i t y ,  which  d e s c r i b e s  

t h e  b a s i c  p r o p e r t i e s  of o p t i m a l  s o l u t i o n s ,  i s  
b a s e d  upon t h e  fundamenta l  a p p r o a c h  o f  i n v a r i a n t  
imbedding .  T h i s  i m p l i e s  t h a t  t o  s o l v e  a s p e c i f i c  
o p t i m i z a t i o n  problem, t h e  o r i g i n a l  problem is  i m -  
bedded w i t h i n  a f a m i l y  of s imi la r  p r o b l e m s .  
Thus, t h e  m u l t i s t a g e  o p t i m i z a t i o n  problem i s  re- 
duced  t o  a s e q u e n c e  o f  s i n g l e  o p t i m i z a t i o n  prob-  
l e m s .  To be a b l e  t o  a p p l y  t h i s  p r i n c i p l e  t o  t h e  
s p e c i f i c  problem s t a t e d  r e q u i r e s  t h e  a s s u m p t i o n  

t h a t  t h e  s ta te  p r o c e s s  

iXk>” k = O  

b e  a weak-sense  Markov p r o c e s s . *  
l e n t  t o  r e q u i r i n g  

T h i s  i s  e q u i v a -  

t o  be  u n c o r r e l a t e d .  

I n v o k i n g  t h e  P r i n c i p l e  o f  O p t i m a l i t y ,  t h e  
f o l l o w i n g  r e c u r s i v e  r e l a t i o n  i s  f o u n d :  

11 (18) 
A 2  
T k N-k+l(Xk+l 

f N - k ( x k )  = Min E [- m + f - 
mk nk 

f o r  

k = 0 , 1 , 2  ,..., N - 1 

S t a r t i n g  a t  t h e  end  where  f o ( x X )  = (xN - 
w o r k i n g  backward,  some a l g e b r a  w i l l  show t h a t  

and 

2 2  
N 

j =k+2 
+ c P ( j ) G j - l a  . 

g i v e s  

By Eq. 
nk.  A f t e r  t a k i n g  t h e  e x p e c t a t i o n  w i t h  r e s p e c t  t o  

(13) xkfl c a n  be  w r i t t e n  i n  t e r m s  of x k  and  

nk, fN-k i s  

2 2  
N 

j =k+l 
+ P( j )Gj- lu  . ( 2 1 )  

* 
A p r o c e s s  is  a weak-sense  Markov p r o c e s s  i f  t h e  
e x p e c t e d  v a l u e  of  t h e  p r o c e s s e s  a t  some t i m e  
g i v e n  t h e  v a l u e s  a t  some p r e v i o u s  t i m e s  d e p e n d s  
o n l y  o n  t h e  l a s t  g i v e n  v a l u e .  



I .  
Now d i f f e r e n t i a t i n g  t h e  t e r m  on  t h e  r i g h t  w i t h  
r e s p e c t  t o  m g i v e s  

where 

P (k  + l)mkGk 

A + P(k + l ) G k  
T 

(23)  2 ’  
B(k)  = - 

as t h e  optimum kth  t e r m  of t h e  optimum s i g n a l  se- 
quence .  P u t t i n g  t h i s  optimum v a l u e  i n t o  Eq. (21)  
r e s u l t s  i n  

where 

Repea t ing  t h i s  s i n g l e  s t a g e  o p t i m i z a t i o n  p r o -  
cedure  N times g i v e s  t h e  op t ima l  s i g n a l  

{mi,” - 
k = O  

i n  a form where t h e  c o n s t a n t s  

N - 1  
{B(k)} k = O  

and 

a r e  i n  r e c u r s i v e  form. One can  g e t  t h e s e  c o n s t a n t s  
i n  c l o s e d  fo rm by i t e r a t i n g  Eqs. (23 )  and (25) ,  
which w i l l  y i e l d  

(26) h @k P ( k )  = - - - B(k) 
Gk 

and 
2 n @ .  

G N - 1  
k 

k j = k  
- 

. (27 )  
2 2  h 

Ga-l ,Il 0 .  f GN-l + - T 

N - 1  B(k) = - N-l 

2 
J=k+l J=a 

Thus, t h e  o p t i m a l  s i g n a l  sequence  i s  g iven  i n  
terms o f  t h e  r e c e i v e r  pa rame te r s  

ar?d A, where 1- is  found frnm t h e  c o n s t a n t  e q u a t i o n  

The s o l u t i o n  g iven  by E q .  (22)  has  s e v e r a l  
i n t e r e s t i n g  p r o p e r t i e s .  F i r s t  o f  a l l ,  t h e  so lu -  
t i o n  is nonparamet r ic  i n  t h e  s e n s e  t h a t  a l l  t h a t  
i s  r e q u i r e d  is t h e  u n c o r r e l a t e d n e s s  o f  t h e  addi -  
t i v e  n o i s e .  
no o t h e r  n o i s e  s t a t i s t i c s  are r e q u i r e d .  Even i f  
t h e  v a r i a n c e  o f  t h e  n o i s e  changes  a t  each  i t e r a -  
t i o n ,  t h i s  a n a l y s i s  may be c a r r i e d  through.  A 
second p r o p e r t y  i s  t h a t  t h e  s i g n a l  a t  t h e  k th  
i t e r a t i o n  i s  a s imple  l i n e a r  f u n c t i o n  o f  t h e  
c u r r e n t  s t a t e ,  xk,  of t h e  r e c e i v e r .  Knowledge o f  
t h i s  e x a c t  s t a t e  i s  made a v a i l a b l e  t o  t h e  t r a n s -  
m i t t e r  by t h e  n o i s e l e s s  f eedback  l i n k .  F i n a l l y ,  
and perhaps  m o s t  impor t an t ,  i s  t h e  p r o p e r t y  t h a t  
i f  t h e  f eedback  l i n k  is  no i sy  such  t h a t  t h e  t r a n s -  
m i t t e r  h a s  o n l y  no i sy  o b s e r v a t i o n s  of t h e  re- 
c e i v e r ‘ s  c u r r e n t  s t a t e ,  t h i s  solut!on is  s t i l l  
optimum w i t h  xk r e p l a c e d  by xk k, x k l k  be ing  t h e  
l ea s t  mean s q u a r e  error estima 4 e of xk  based on  
no i sy  o b s e r v a t i o n s  up t o  t h e  kth i t e r a t i o n .  I n  
o t h e r  words, f o r  t h e  problem w i t h  no i sy  feedback ,  
e s t i m a t i o n  and o p t i m i z a t i o n  s e p a r a t e . ”  ,12 

Except f o r  a f i n i t e  v a r i a n c e ,  02, 

S o  f a r  t h e  o p t i m i z a t i o n  is  c a r r i e d  o u t  i n  
t e r m s  o f  t h e  r e c e i v e r  pa rame te r s  

and 

( . k r  k = O  - 

I n  t h e  nex t  s e c t i o n  optimum r e c e i v e r  pa rame te r s  
a r e  found u s i n g  o r d i n a r y  c a l c u l u s .  

Rece ive r  Parameter  Op t imiza t ion  

I n  t h e  l a s t  s e c t i o n  t h e  op t ima l  s i g n a l  se- 
quence 

w a s  found i n  te rms  of t h e  r e c e i v e r  pa rame te r s  

and 

and 
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and 

Using t h i s  optimum s i g n a l  sequence, a f t e r  some 
a l g e b r a  t h e  minimum d i s t a n c e  E(xN - 
c o n s t r a i n t  equa t ion  c a n  now be found i n  terms of  
t h e s e  pa rame te r s ,  

and t h e  

2 

!.kr - 
)i 
T 
- 

E(xN-8)2 = ( N i l G 2  N - 1  ," k = O  

n Q .ffiN-l + - 3 e2 
Q,=1 '-lk=Q. t h a t  minimize E(xN - e l 2  and meet t h e  ave rage  

power c o n s t r a i n t ,  f i r s t  no te  t h a t  i n  bo th  Eqs. 
( 2 9 )  and (30)  t h e s e  parameters  appea r  i n  t h e  form 

2 2  2 2 
J N - l U  ' N - 1  

n O.u +G 

(33)  
2 

."[N-l k= l  e GL-lj:eOj+GN-l N - 1  2 2  + 

Gk-l j=k rl Q .  J 
( 2 9 )  

h 
T 
- 

=k+l 

0 2  G2 G2 
1 N - 1  N - 1  N-2' 

Thus, t h e  minimum d i s t a n c e  E(xN - A ) 2  and t h e  
c o n s t r a i n t  equa t ion  are now w r i t t e n  i n  terms of 
t h e  parameters  of t h e  r e c e i v e r  and t h e  Lagrange 
m u l t i p l i e r  A. Note, however, t h a t  both t h e s e  
e q u a t i o n s  depend on t h e  p a r t i c u l a r  v a l u e  of 9. 
Any s o r t  of optimum parameter  set must be inde- 
pendent o f  t h e  message p o i n t  8 so t h a t  parameter  
o p t i m i z a t i o n  w i l l  be c a r r i e d  o u t  on t h e  averaged 
e q u a t i o n s .  The averaged equa t ions ,  

and 

are found by simply r e p l a c i n g  €I2 by 08 = EO2. 
From t h i s  p o i n t  on, a l l  e x p e c t a t i o n s  w i l l  be taken 
w i t h  r e s p e c t  t o  both t h e  channe l  n o i s e  and a l l  
p o s s i b l e  message p o i n t s  8 .  Rather  t han  a con- 
s t r a i n t  e q u a t i o n  f o r  each 8, on ly  one averaged 
(ove r  8 t o o )  power c o n s t r a i n t  i s  imposed. The 
d i s t a n c e  E(XN - i s  also now averaged o v e r  8 as 
w e l l  as t h e  channel  n o i s e .  Th i s  a d d i t i o n a l  
ave rag ing  does not  change t h e  r e s u l t s  i n  any i m -  
p o r t a n t  way,  but i t  does reduce t h e  computat ion 
r e q u i r e d  by a c o n s i d e r a b l e  amount. 

In  s e a r c h i n g  f o r  t h e  optimum parameters  

k = 1 ,2  ,..., N . 
I t  is  clear from t h i s  t h a t  any change i n  t h e  
pa rame te r s  

may be absorbed by co r re spond ing  changes i n  

Hence, w i thou t  l o s s  of  g e n e r a l i t y ,  choose 

Th i s  c h o i c e  r educes  t h e  main e q u a t i o n s  t o  s i m p l e r  
forms.  

and 

Regarding A as j u s t  ano the r  parameter ,  t h e  problem 
of f i n d i n g  optimum pa rame te r s  r educes  t o  a s t r a igh t -  
forward c a l c u l u s  problem where t h e  c o n d i t i o n s  f o r  
t h e  optimum pa rame te r s  are 

2 
aE(xN - 9 )  A a ( p a V n  

(37) - - _ -  
T A  

a(+ 

and 

where VG i s  t h e  N-dimensional g r a d i e n t  w i t h  r e s p e c t  
t o  t h e  Farameters 

IGk>" - k = O  



S o l v i n g  t h e s e  N + 1 e q u a t i o n s  t h e  optimum 
pa rame te r s  are  found t o  be . .  

1 7  

2 2 4 k +  
2 2 E ( X ~  - e )  = o o p  

(44 1 p ( 1 - p )  b2p2N 

1 - 0  
=- 

2 
h 
T 
- (39) 2 2  2 2 2 

Not ing  t h a t  (b u ) /p  (1 - p ) = uo, t h i s  becomes 

k 
G = bp k , k = O , l ,  ..., N - 1 (40)  

2 2 2k  
E ( X ~  - e )  = (45 )  

where 

b =  Thus, t h e  k th  i t e r a t i o n  of t h e  s i g n a l  sequence  
has  averaged  power 

2 
PavT + NU 

( NO2 2)' 

PavT + NO 
P =  

The o v e r a l l  scheme u s i n g  t h e  optimum s i g n a l s  
and t h e  pa rame te r s  g iven  above w i l l  now be re- 
f e r r e d  to a s  t h e  optimum scheme. Th i s  c h o i c e  of 
pa rame te r s  g i v e s  t h e  optimum s i g n a l  sequence  

P f o r  t h e  White Gauss ian  Noise  Channel 

Although an  o p t i m a l  scheme h a s  been developed  
f o r  t h e  a d d i t i v e  w h i t e  n o i s e  channe l  w i t h  no i se -  
less feedback ,  l i t t l e  has  been  s a i d  about  how w e l l  
it per forms.  I n  p a r t i c u l a r ,  what s o r t  o f  i n f o r -  
mat ion  rate can  i t  have, and how does t h e  proba- 
b i l i t y  of e r r o r  behave? I n  t h i s  s e c t i o n  t h e s e  
q u e s t i o n s  w i l l  b e  answered f o r  t h e  w h i t e  Gauss ian  
n o i s e  channe l .  Also  a compar ison  w i t h  t h e  b e s t  
known schemes wi thou t  f eedback  w i l l  be made. 

.. 

and t h e  minimum d i s t a n c e  

2 2 2N 
E ( X ~  - e )  = o0p (43 1 For  t h e  w h i t e  Gauss ian  n o i s e  channe l  t h e  

n o i s e  components 

i n k y  k = O  - 
This  optimum scheme i s  summarized i n  F i g .  5. 

A Signal 
Source Processor 

are independent  
w i t h  v a r i a n c e  

z e r o  mean Gauss i an  random v a r i a b l e  

NO En2 = a2 - - 
k - 2  ( 4 7 )  k S t a t e  Equa t ion :  x ~ + ~  = xk + bp rk, k = O , l , . . , N - 1  

where N,/2 i s  t h e  doub le - s ided  s p e c t r a l  d e n s i t y .  
Because o f  t h e  l i n e a r i t y  o f  t h e  s t a t e  e q u a t i o n  and 
of t h e  optimum s i g n a l  sequence ,  t h e  states 

xo = 0 

are also Gauss i an  random v a r i a b l e s .  S i n c e  t h e  de- 
c i s i o n  a s  t o  what message i s  s e n t  i s  based  on  XN 

and t h e  s ta t i s t ics  of xN are known, t h e  p r o b a b i l i t y  
o f  error, Pe, is  easy  t o  compute. 

k = O , l ,  ..., N-1 

F i g .  5 
Cons ide r  t h e  s ta te  xN f o r  t h e  o p t i m a l  scheme 

shown i n  F i g .  5 

x = x  - 
N N-1  One impor t an t  p r o p e r t y  of t h i s  op t ima l  scheme 

i s  t h e  f a c t  t h a t  t h e  t o t a l  power, PavT, is uni -  
formly  d i s t r i b u t e d  ove r  t h e  N i t e r a t i o n s .  From 
Eq. (13 )  w i t h  t h e  optimum pa rame te r s  g iven  i n  
Eqs. (40 ) ,  (41 ) ,  and (42) ,  i t  f o l l o w s  t h a t  f o r  
t h e  kth s ta te  

= P2xN-1 

Using t h e  s t a t e  
s i v e l y  g i v e s  

e q u a t i o n  f o r  each  s t a t e  succes- 
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error, Pe, i s  t h e  p r o b a b i l i t y  t h a t  xN i s  o i i t s i r l ~  
t h e  i n t e r v a l  c o n t a i n i n g  0 (shaded area). Thus, 

xN = (1 - p 2N ) e  + bp Z(N-l)Nilp-jnj  . (49)  
1 j =O - 

The mean v a l u e  of xN given 8 is c l e a r l y  
pe  = 2 erfc  {*$ 

2N 
E ( X ~  e )  = (1 - p )e 

wi th  c o n d i t i o n a l  v a r i a n c e  = erfc  {( 4M 0 p 2N)"> * 

Noting t h a t  

2 2 2  
b o  

2 2 = uo 7 
P ( 1 - P )  

(52)  

t h i s  c o n d i t i o n a l  v a r i a n c e  i s  r e w r i t t e n  

2 2N 2N 
Var (xN1O) = uop ( 1  - p . (53) 

Note t h a t  from Eq. (50)  i t  i s  c l e a r  t h a t  xN 
i s  a b i a sed  e s t i m a t o r  of 8.  This  b i a s  r e s u l t e d  
from t h e  f a c t  t h a t  an average power c o n s t r a i n t  w a s  
imposed when t r y i n g  t o  minimize E(xN - 8 ) ' .  
l a r g e  N and T, however, pZN << 1 so t h a t  a good 
approximation f o r  t h e  c o n d i t i o n a l  mean and 
v a r i a n c e  is  

For 

~ ( ~ ~ 1 8 )  = e (54 )  

and 

This  e q u a t i o n  shows t h a t  Pe can  be d r i v e n  t o  
z e r o  by i n c r e a s i n g  T (and N). S i n c e  i n c r e a s i n g  T 
a l lows  more t o t a l  expected power, PaVT, p e r  
message t h i s  r e s u l t  i s  expec ted .  Suppose now, 
however, t h a t  M i s  i n c r e a s i n g  w h i l e  T (and N) are 
f i x e d ;  t hen  i n  t h i s  case Pe approaches one.  This  
i s  a l s o  expec ted  s i n c e  t h e  t o t a l  energy p e r  
message is  f i x e d  w h i l e  t h e  number of p o s s i b l e  
messages i n c r e a s e s .  I f  bo th  T (and N) and M are 
i n c r e a s i n g ,  what i s  t h e  t r ade -o f f  p o i n t  where 
t h e s e  two o p p o s i t e  e f f e c t s  cance l?  I n  p a r t i c u l a r ,  
is  i t  p o s s i b l e  for M t o  i n c r e a s e  wi th  T as 

(57)  
RT M = e  

f o r  R a p o s i t i v e  c o n s t a n t  and s t i l l  have Pe go t o  
z e r o  wi th  i n c r e a s i n g  T? Shannon p o i n t e d  o u t  t h a t  
i t  i s  p o s s i b l e  t o  have Pe go t o  z e r o  a s  l o n g  as R 
i s  less than  a c r i t i c a l  c o n s t a n t  C which he  c a l l e d  
channe l  c a p a c i t y .  I n  t h e  f o l l o w i n g  d i s c u s s i o n  i t  
w i l l  be shown t h a t  t h e  op t ima l  scheme can  ach ieve  
t h i s  c r i t i c a l  r a t e  and t h a t  i t  has  a p r o b a b i l i t y  
of  e r r o r  t h a t  d e c r e a s e s  much more q u i c k l y  wi th  in -  
c r e a s i n g  T t h a n  t h e  b e s t  known nonfeedback communi- 
c a t i o n  schemes. 

(55) Def in ing  as t h e  message r a t e  
2 2N Var (x ( e )  = a0p N 

The c o n d i t i o n a l  mean and v a r i a n c e  g iven  i n  Eqs. R = -  Nats p e r  second (58) 
(54) and (55)  w i l l  be used i n s t e a d  of  t h e  a c t u a l  
mean and v a r i a n c e  of Eqs. (50) and (51) .  This  and r e c a l l i n g  Eqs. (56 ) ,  (57) ,  and t h e  f a c t  t h a t  
w i l l  r e s u l t  i n  a s l i g h t  upper bound of t h e  t r u e  
p r o b a b i l i t y  o f  e r r o r ,  but t h e  d i f f e r e n c e  i s  n e g l i -  

T 

C J ~  = 1/12, t h e  p r o b a b i l i t y  o f  error i s  r e w r i t t e n ,  

(59) g i b l e  f o r  l a r g e  va lues  of T and N .  p 
e 

= 2 erfc fJ?j e[C(N,T)-RIT 3 

Recall t h a t  the r e c e i v e r  bases  i t s  d e c i s i o n  
a s  t o  which one of M messages i s  s e n t  on  xN i n  t h e  
f o l l o w i n g  manner. The j th  message i s  chosen on ly  
i f  xN l ies  i n  t h e  j th  s u b i n t e r v a l  o f  [- 1/2, 1/21. 
S i n c e  t h e r e  are M equa l  l e n g t h  s u b i n t e r v a l s ,  each 
one has  l e n g t h  1/M. I f  X N  l i e s  i n  t h e  s u b i n t e r v a l  
c o n t a i n i n g  8,  t hen  a c o r r e c t  d e c i s i o n  is  made. 
Noting t h a t  xN is  a Gaussian random v a r i a b l e  w i t h  
mean 0 and va r i ance  o8pzN, t h e  p r o b a b i l i t y  d e n s i t y  
of XN i s  p resen ted  i n  F ig .  6. The p r o b a b i l i t y  of  

F i g .  6 .  The E r r o r  P r o b a b i l i t y  is t h e  Shaded Area 

where 

As y e t  N and T have no t  been s p e c i f i e d .  I n  
t h e  cont inuous- t ime channe l  t h e s e  schemes r e q u i r e  
N o r t h o g o n a l  carr ier  s i g n a l s  of d u r a t i o n  no t  more 
t h a n  T seconds.  Hence, f o r  a f i x e d  t i m e  T, t h e  
v a l u e  of N i s  determined by t h e  number of o r tho -  
gonal  c a r r i e r s  a l lowed.  Two cases w i l l  now be 
i n v e s t i g a t e d .  

1. The Wideband Scheme. T y p i c a l l y  i n  space  
communication, t h e  channel  p l a c e s  no r e s t r i c t i o n s  
on t h e  carr ier  s i g n a l  bandwidth.  Under t h i s  con- 
d i t i o n  of  no bandwidth r e s t r i c t i o n ,  t h e  a d d i t i v e  
w h i t e  Gaussian n o i s e  channe l  has  t h e  channel  
c a p a c i t y  g iven  by13 

N a t s  p e r  second . (61) 
Pav 

N o  
c = -  
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Without feedback,  t h e  b e s t  known code f o r  
t h i s  channel  i s  a "regular-s implex" se t  of code 
words ( t h a t  is, a set o f  M equal-energy s i g n a l s  
w i t h  mutual c r o s s - c o r r e l a t i o n  of  - l / ( M  - 1 ) .  For 
l a r g e  M, an o r t h o g o n a l  s i g n a l  set ( f o r  which t h e  
c r o s s - c o r r e l a t i o n s  are ze ro  r a t h e r  t han  -l/(M - 1 )  
performs almost  as w e l l .  The i d e a l  r e c e i v e r  f o r  
such s i g n a l s  i s  a bank of M c o r r e l a t i o n  d e t e c t o r s ,  
whose o u t p u t s  are scanned t o  determine t h e  co r re -  
l a t o r  y i e l d i n g  t h e  l a r g e s t  o u t p u t .  The error 
p r o b a b i l i t y  f o r  an o r thogona l  ( o r  s implex)  s i g n a l  
set  has  been e v a l u a t e d  numer i ca l ly  f o r  v a l u e s  of 
M from 2 t o  lo6 .  
f o l l o w i n g  a sympto t i c  e x p r e s s i o n  can be  used. I f  
T is  t h e  d u r a t i o n  o f  each of  t h e  M s i g n a l s ,  
assumed e q u a l l y  l i k e l y  a p r i o r i ,  then14 

For l a r g e r  v a l u e s  of  M, t h e  

c o n s t a n t  - TE(R) 
'e,orth - T@ 

(62) 

where 

l ' B S 2  , 

This  e q u a t i o n  shows t h a t  t h e  e r r o r  p r o b a b i l i t y  
f o r  o r thogona l  codes dec reases  e s s e n t i a l l y  expo- 
n e n t i a l l y  wi th  T. A s  a r e s u l t ,  f o r  l a r g e  T, t h e  
c h o i c e  of  a s u i t a b l e  p a i r  of  va lues  R and R t o  
ach ieve  a g i v e n  Pe i s  e s s e n t i a l l y  determined by 
t h e  q u a n t i t y  E(R).  

Consider  now t h e  op t ima l  scheme wi th  t h e  
e r r o r  p r o b a b i l i t y  g iven  by Eqs. (59) and (60). 
When t h e  channe l  p l a c e s  no r e s t r i c t i o n s  on t h e  
c a r r i e r  bandwidth,  t h e  number o f  p o s s i b l e  o r tho -  
gonal  carr ier  s i g n a l s  of d u r a t i o n  less t h a n  T 
seconds is  u n l i m i t e d .  Hence, f o r  a f i x e d  T, N 
can  be made a r b i t r a r i l y  l a r g e  so t h a t  Eq. (60) 
becomes 

C, i n  both c a s e s ,  t h e  ra te  a t  which t h e  error 
p r o b a b i l i t y  d e c r e a s e s  wi th  i n c r e a s i n g  T is dra-  
m a t i c a l l y  more r a p i d  wi th  t h e  op t ima l  feedback 
scheme than  t h e  b e s t  nonfeedback scheme. As a 
s imple  comparison between t h e  feedback and non- 
feedback cases, c o n s i d e r  t h e  v a l u e  of  T r e q u i r e d  
to ach ieve  

P = P  = (67) e e , o r t h  

f o r  

C = 1 b i t / s e c  

R = . 8 C  . 
The nonfeedback o r thogona l  code scheme g i v e s  

= 2030 seconds 
T o r t h  

w h i l e  t h e  op t ima l  feedback scheme r e q u i r e s  

(69) Tfb = 8 .1  seconds . 
Although t h e  op t ima l  scheme has been evalu-  

a t e d  h e r e  f o r  t h e  w h i t e  Gaussian n o i s e  channe l ,  
i t  does no t  depend on t h e  s t a t i s t i c s  of  t h e  addi-  
t i v e  w h i t e  n o i s e .  I f  t h e  a d d i t i v e  n o i s e s  

r , N - l  

k = O  
p k i  

are independent  random v a r i a b l e s  but o t h e r w i s e  
u n s p e c i f i e d ,  t hen  f o r  t h i s  wideband channe l  t h e  Pe 
g iven  by Eq. (65) i s  s t i l l  c o r r e c t .  This  can  
e a s i l y  be shown by app ly ing  t h e  c e n t r a l  l i m i t  
theorem. I n  t h i s  case, however, C, = Pav/No is  
on ly  a lower bound f o r  t h e  channel  c a p a c i t y  of 
t h e  a d d i t i v e  w h i t e  n o i s e  channel  of  s p e c t r a l  den- 
s i t y  No/2 and t r a n s m i t t e d  power Pav. 
c a p a c i t y  of such  channe l s  may be much l a r g e r  t han  
t h i s ,  bu t  t h e  c a p a c i t y  is  u s u a l l y  t o o  compl i ca t ed  
t o  e v a l u a t e  a n a l y t i c a l l y .  A t  any r a t e ,  r e g a r d l e s s  
of  t h e  s t a t i s t i c s  of  t h e  a d d i t i v e  w h i t e  n o i s e ,  t h e  
op t ima l  scheme should g i v e  c o n s i d e r a b l e  improve- 
ment o v e r  t h e  b e s t  nonfeedback scheme as i s  demon- 
s t r a t e d  i n  t h e  Gaussian case. 

The a c t u a l  

'av 2. The Band-Limited Scheme. Suppose now 
(64) t h e  channel  i s  band-l imited t o  bandwidth W ;  t h a t  l i m  C(N,T) = C, = - .. N 

0 is, a l l  carr ier  s i g n a l s  are r e s t r i c t e d  i n  band- N-= 

wid th  t o  [- W, W ] .  With t h i s  a d d i t i o n a l  t r a n s -  
m i t t e r  c o n s t r a i n t  imposed, t h e  channe l  c a p a c i t y  i s  
no l o n g e r  Pav/No as i n  Eq. (61) ,  but is  now g iven  

r e s u l t i n g  i n  t h e  e r r o r  p r o b a b i l i t y  

by 
(65) 

J 

From t h e  w e l l  known bounds on e r f c  (XI'' 

1 -1/2x2 1 n a t s  p e r  second. For s m a l l  v a l u e s  of PaV/NoW t h i s  m e  x * c a p a c i t y  approaches t h a t  of Eq. (61)  as i t  shou ld ,  
- 

f o r  when W - m both channe l s  a r e  i d e n t i c a l .  
(66) 

Shannon d e r i v e d  t h i s  c a p a c i t y  formula,  Cw, by 
a random cod ing  argument,  and u n t i l  t h e  work o f  
Schalkwijk2 las t  yea r ,  no d e t e r m i n i s t i c  way w a s  
known f o r  c o n s t r u c t i n g  a code a c h i e v i n g  t h e  

i t  i s  c lear  t h a t  Pe d e c r e a s e s  e s s e n t i a l l y  i n  a 
double  e x p o n e n t i a l  manner w i t h  i n c r e a s i n g  T. 
Hence, a l though  t h e  message ra te  i s  bounded by 
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critical rate for a band-limited white Gaussian 
noise channel with or without feedback. The opti- 
mum scheme for this band-limited channel is found 
to be essentially the same as Schalkwijk's scheme. 
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A MODERN SYSTEMS APPROACH TO SIGNAL DESIGN 

bY 

Fred C. Schweppe, Staff Member  

, Lincoln Laboratory, * Massachusetts Institute of Technology 

Introduction: 

Modern systems theory can be characterized by 
the use of state variable concepts and optimization 
techniques such a s  Pontryagin's maximum principle 
(the minimum principle). This paper i s  intended to  
provide a feeling for why modern systems theory i s  a 
viable approach t o  many signal design problems of 
communication and radar  systems. The basic ideas 
and available resul ts  a r e  summarized; the details a r e  
left t o  the cited references. The discussion i s  
res t r ic ted t o  the use of modern systems theory for  a 
particular c l a s s  of signal design problems, no attempt 
is made t o  survey the whole signal design field. 

Problem Definition: 

The general signal design concept can be applied 
to  a wide range of physical problems. However, the 
present discussion is concentrated on communication 
and radar  systems.  The t e r m  "channel" is applied 
to  both radar  and communication systems a s  a radar  
reflector i s  considered t o  be a channel. The t e r m  
"signal" is also used in  a general sense. In a particular 
application, the signal may be an amplitude modulation, 
a frequency modulation, an observation program, o r  
simply a t ime function. 

A signal i s  to  be transmitted over some finite 
t ime interval 0 5 t 5 T . The signal must satisfy 
possible constraints on peak amplitude, total energy, 
and "bandwidth". The received output of the channel 
is put through a data processor  to  obtain the desired 
output at t ime T (or T plus system delays). There 
a r e  two cases  of particular interest: 

1. Decision Making: The transmitted signal i s  
one of M possible signals. The data processor 's  
output i s  a decision a s  t o  which signal was transmitted. 
The performance of the system i s  measured by the 
probability of making an e r r o r .  

2. State Estimation: The transmitted signal is 
used to "observe" the channel; The data processor's 
output i s  an estimate of the s ta te  of the channel a t  t ime 
T . The performance of the system i s  measured by 

* Operated with support f rom the U. S. Air  Force. 

N 6 7 - 2 9 9 0 6  
the covariance matrix of the e r r o r s  in the estimated 
state. 

The decision making c a s e  a r i ses  both in communication 
systems and in the detection aspects of r a d a r  systems. 
The s ta te  estimation case i s  usually associated with 
radar  systems wherein the channel's state corresponds 
t o  the radar  target ' s  position, velocity, size, spin 
rate ,  etc. 

It i s  desired to  find the signal (or set of M 
signals) that optimizes the performance subject to  
the imposed signal constraints. This design problem 
requires  an assumption on the relationship between 
the signal (signal set)  and the data processor .  One 
possible approach assumes a fixed data processor. 
The approach discussed here  assumes the data 
processor  i s  always "matched" t o  the signal (signal 
set)  in the sense that the data processor  is always 
the optimum (physically realizable) system c o r r e -  
sponding t o  the signal. 

The signal design problem can be summarized 
as follows: 

Given a channel s t ructure  and 
the desired constraints on signal 
amplitude, energy, and bandwidth. 
Find the signal o r  set of M signals 
that optimizes the performance 
measure assuming the data processor  
is always optimally "matched " to  
the signal (signal set). 

A modem systems theory approach t o  this  
signal design problem can be partitioned into three 
steps. 

1. The channel is modeled a s  a dynamical 
system represented by state  variable differential 
equations (possibly with stochastic inputs). 
constraints a r e  also modeled by state variable 
equations. 

The 

2. The data processor  is modeled as the 
optimum dynamical system corresponding t o  the 
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channel model and the signal (signal set). The 
performance of this da t i  processor  i s  determined a s  
function of the signal (signal set). 

3 .  Optimal control theory, in particular 
P o n t r y a p ' s  maximum principle, i s  used to  find the 
optimum signal (signal set). 

More detailed discussions will now be provided on 
these three s teps .  

Channel and Constraint Modeling: 

References 1 and 2 contain some general discus-  
sions on the representation of channels and signal 
constraints by state variable models. 
a straightforward procedure a s  the channel and 
constraints can often be modeled using lumped para-  
meter  l inear  systems. 
just represented by s ta te  variable equations. Good 
discussions on the state space modeling of linear 
systems can be found, for example, in R e f s .  3 and 4 .  

This i s  often 

These linear systems a r e  then 

Linear systems can enter  a channel model in 
various ways. 
assumed to be generated by passing white noise through 
a linear system. A bandwidth limited channel can be 
modeled a s  l inear  system with a bandpass frequcncy 
response. Stochastic (incoherent) channels such a s  
multipath communication links and extended radar  
targets  like clutter and planets can be modeled by P 

tapped delay line with correlated noise multiplying 
tap outputs nnd a final summing bus. The delays can 
be approximated by lumped parameter  l inear  systems 
and the correlated noise obtained from white noise 
and l inear  systems.  

Correlated GPussian noise can be 

Constraints on the allowable peak amplitude and 
total energy of the signal usually fit naturally into the 
overall analysis. There a r e  many possible definitions 
of bandwidth but most of the interesting bandwidth 
constraints can be incorporated into a state variable 
framework. Two such possibilities are based on the 
energy contained in the signal's t ime derivative and 
on the energy t ransfer  of a low pass  linear system. 

Of course, not all channels are easily modeled 
using linear systems and special techniques may be 
required. 
moving radar  point reflector requires  linearization of 
nonlinear equations. The development of "equivalent" 
linear models for  an accelerating point reflector i s  
discussed in Ref. 5'for both amplitude and frequency 
modulations. 

F o r  example, channel modeling for  a 

Data Processor Performance: 

F o r  state estimation, the data processor  perform 
ance i s  measured by the covariance matrix of the 

e r r o r s  in the estimate of the s ta te .  The optimum 
dynamical system for  data processing and i t s  associ-  
ated performance a r e  available in the Kalmnn-Bucy 
formulation of the Weiner-Hopf filtering problem for  
Gaussian processes ,  see Refs .  6 and 7 .  

For  decision making the dsta processor  perform- 
ance i s  measured by the probability of e r r o r .  The 
optimum dynamical system for  data processing 
(likelihood function generation) i s  discussed in Ref. 8 
for  Gaussian processes .  Performance measures  for  
the optimum processor  a r e  discussed in Ref. 9 in t e r m s  
of two "distance" measures;  the divergence and the 
Bhattacharyya distance. These measures  a r e  not 
always equivalent to  the probability of e r r o r  but they 
can provide bounds and i r e  felt to  be adequate for  
signal design. 

F o r  both s ta te  estimation and decision making, 
the performance i s  evaluated in t e r m s  of the solution 
of a matrix Riccati equation which i s  a f i rs t  o rder ,  
non-linear, matrix system of ordinary differential 
equations with time a s  the independent variable. This 
matrix Riccati equation i s  the one associated with the 
optimum time varying linear filter. The signal (signal 
se t )  appears in this Riccati equation a s  a t ime varying 
' '  coefficient ' I  . 

Signal Optimization: 

The Riccati equation which governs performance 
i s  a matrix system of f i rs t  o rder  differential equations. 
This  Riccati equation can be considered to  be a s ta te  
space representation of some hypothetical dynamical 
system. 
the input to this  hypothetical dynamical system and the 
performance measure can be considered to  be i t s  out- 
put. Viewed in this light, the signal design problem is 
the same a s  the "classical" optimum control problem 
of designing the input which gives the best output of a 
dynamical system. 

The signal (signal set)  can be considered to  be 

A major tool of optimum control theory i s  

Pontryagin's maximum principle yields 
Pontryagin's maximum principle (see for  example, 
Ref. 3).  
necessary conditions which the optimum signal (signs1 
set)  must satisfy. 
general information on the overall s t ructure  of the 
optimum. F o r  numerical resul ts ,  a two point boundary 
value problem must be solved and computer techniques 
are often required. Some of the resul ts  obtained using 
the maximum principle will now be summarized. 

These necessary conditions provide 

Optimum signals have been calculated for  the 
s ta te  estimation case of a r a d a r  observing an acce ler -  
ating point reflector in the presence of additive white 
noise. 
modulation i s  frequency switching between the allowable 
bandwidth l imits .  In Ref .  11, it i s  shown that the 

In Ref. I O ,  it i s  shown that the optimum frequency 
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I .  

optimum amplitude modulation under peak power and 
total energy constraints is a pulse t ra in  of at most 
th ree  pulses; all pulses having the maximum allowable 
peak power. In both references, the performances of 
the optimum signals a r e  compared with more 
conventional signals. 

References 10 and 11 contain resul ts  for specific 
problems. Reference 12 contains a more general 
Te-llt w!.ich i s  called the on-off principle. 
statement of the on-off principle is now given. 
the channel i s  as shown in Figure 1. The signal, 
u(t) 0 5 t 5 T, is considered to  be an "instantaneous 
power". The signal constraints are: 

A loose 
Assume 

u(t) dt = E 

0 5 u(t) 5 U (peak power) . 
(total energy) I' I '  

0 

There a r e  two problems of interest: 

1. State Estimation: The switch is closed and 
the s ta te  of the dynamical system is t o  be estimated. 

2. Decision Making: The position of the switch 
i s  to  be estimated. 

The necessary conditions which the optimum signal 
must satisfy prove that for  either problem the 
optimum u(t) at any t ,  0 5 t 5 T , i s  e i ther  0 or 
U ; that is the optimum power level switches back and 
forth between full power and zero  with no intermediate 
values. Thus the on-off principle s ta tes  that the 
general s t ructure  of the optimum is independent of the 
details of the dynamical system and the correlated 
noise (the pulse t ra in  of Ref. 11 is a special case  of 
the on-off principle). Of course, the actual "switch 
times" depend on the details of the dynamical system 
and the correlated noise and switch t ime calculation 
requires  the solution of a two point bounaary value 
problem. 

Discussion: 

The use of modern system concepts for  signal 
design is really aphilosophy of approach rather  than a 
single technique. The crux  of th i s  approacn is the  use 
of state variable models so that the system performance 
can be considered t o  be the output of a dynamical 
system (the Riccati equation) whose input is the signal 
(signal set). Given such a model, the signal design 
proceeds directly using the techniques of optimal 
control theory. 

In one sense this modern system approach is just 
a . reformulat ion of a problem in new te rms .  However, 
this reformulation is extremely valuable as it makes 
available the powerful engineering and mathematical 

tools of modern systems theory. These tools enable 
the actual solution of difficult signal design problems 
involving finite t ime intervals, t ime varying systems 
and real is t ic  signal constraints. 

The many possibilities for  further work include: 

1. Oeveloprnent of other general structural 
properties like the on-off principle. 

2. Development of computation algorithms 
tailored to  solving the necessary two point boundary 
value problems. 

3 .  
problems. 

Calculation of explicit solutions for  specific 

Correlated _1 
White 
noise 

noise 

System 

Output 

White 
noise 

u(t) L - i  
Switch 

Figure 1 

Channel Model for  On-Off Principle 
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